998 resultados para Ferroelectric switching


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ferroelectric and the dielectric behaviors of binary blends formed by an equi-molar Poly(vinylidene fluoride trifluoroethylene) copolymer [P(VDF-TrFE)] and Poly(methyl methacrylate) [PMMA] were investigated, for several PMMA compositions. For 40 wt.% or more PMMA contents, the blends are completely amorphous. Below this value, they crystallize in the usual Cm2m polar structure of P(VDF-TrFE). The ferroelectric switching characteristics and the dielectric response of the blends demonstrate the formation of dynamically stable ferroelectric domains. Moreover, the blended films are highly transparent in the optical region. Therefore, thin films of these binary blends are good candidates as host materials for nonlinear optical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single-phase multiferroic materials are of considerable interest for future memory and sensing applications. Thin films of Aurivillius phase Bi 7Ti3Fe3O21 and Bi6Ti 2.8Fe1.52Mn0.68O18 (possessing six and five perovskite units per half-cell, respectively) have been prepared by chemical solution deposition on c-plane sapphire. Superconducting quantum interference device magnetometry reveal Bi7Ti3Fe 3O21 to be antiferromagnetic (TN = 190 K) and weakly ferromagnetic below 35 K, however, Bi6Ti2.8Fe 1.52Mn0.68O18 gives a distinct room-temperature in-plane ferromagnetic signature (Ms = 0.74 emu/g, μ0Hc =7 mT). Microstructural analysis, coupled with the use of a statistical analysis of the data, allows us to conclude that ferromagnetism does not originate from second phase inclusions, with a confidence level of 99.5%. Piezoresponse force microscopy (PFM) demonstrates room-temperature ferroelectricity in both films, whereas PFM observations on Bi6Ti2.8Fe1.52Mn0.68O18 show Aurivillius grains undergo ferroelectric domain polarization switching induced by an applied magnetic field. Here, we show for the first time that Bi6Ti2.8Fe1.52Mn0.68O18 thin films are both ferroelectric and ferromagnetic and, demonstrate magnetic field-induced switching of ferroelectric polarization in individual Aurivillius phase grains at room temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thin single-crystal lamellae cut from Pb(Zr,Ti)O3–Pb(Fe,Ta)O3 ceramic samples have been integrated into simple coplanar capacitor devices. The influence of applied electric and magnetic fields on ferroelectric domain configurations has been mapped, using piezoresponse force microscopy. The extent to which magnetic fields alter the ferroelectric domains was found to be strongly history dependent: after switching had been induced by applying electric fields, the susceptibility of the domains to change under a magnetic field (the effective magnetoelectric coupling parameter) was large. Such large, magnetic field-induced changes resulted in a remanent domain state very similar to the remanent state induced by an electric field. Subsequent magnetic field reversal induced more modest ferroelectric switching.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Strain effects have a significant role in mediating classic ferroelectric behavior such as polarization switching and domain wall dynamics. These effects are of critical relevance if the ferroelectric order parameter is coupled to strain and is therefore, also ferroelastic. Here, switching spectroscopy piezoresponse force microscopy (SS-PFM) is combined with control of applied tip pressure to exert direct control over the ferroelastic and ferroelectric switching events, a modality otherwise unattainable in traditional PFM. As a proof of concept, stress-mediated SS-PFM is applied toward the study of polarization switching events in a lead zirconate titanate thin film, with a composition near the morphotropic phase boundary with co-existing rhombohedral and tetragonal phases. Under increasing applied pressure, shape modification of local hysteresis loops is observed, consistent with a reduction in the ferroelastic domain variants under increased pressure. These experimental results are further validated by phase field simulations. The technique can be expanded to explore more complex electromechanical responses under applied local pressure, such as probing ferroelectric and ferroelastic piezoelectric nonlinearity as a function of applied pressure, and electro-chemo-mechanical response through electrochemical strain microscopy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ferroic-order parameters are useful as state variables in non-volatile information storage media because they show a hysteretic dependence on their electric or magnetic field. Coupling ferroics with quantum-mechanical tunnelling allows a simple and fast readout of the stored information through the influence of ferroic orders on the tunnel current. For example, data in magnetic random-access memories are stored in the relative alignment of two ferromagnetic electrodes separated by a non-magnetic tunnel barrier, and data readout is accomplished by a tunnel current measurement. However, such devices based on tunnel magnetoresistance typically exhibit OFF/ON ratios of less than 4, and require high powers for write operations (>1 × 10(6) A cm(-2)). Here, we report non-volatile memories with OFF/ON ratios as high as 100 and write powers as low as ∼1 × 10(4) A cm(-2) at room temperature by storing data in the electric polarization direction of a ferroelectric tunnel barrier. The junctions show large, stable, reproducible and reliable tunnel electroresistance, with resistance switching occurring at the coercive voltage of ferroelectric switching. These ferroelectric devices emerge as an alternative to other resistive memories, and have the advantage of not being based on voltage-induced migration of matter at the nanoscale, but on a purely electronic mechanism.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ferroic-order parameters are useful as state variables in non-volatile information storage media because they show a hysteretic dependence on their electric or magnetic field. Coupling ferroics with quantum-mechanical tunnelling allows a simple and fast readout of the stored information through the influence of ferroic orders on the tunnel current. For example, data in magnetic random-access memories are stored in the relative alignment of two ferromagnetic electrodes separated by a non-magnetic tunnel barrier, and data readout is accomplished by a tunnel current measurement. However, such devices based on tunnel magnetoresistance typically exhibit OFF/ON ratios of less than 4, and require high powers for write operations (>1 × 10 6 A cm -2). Here, we report non-volatile memories with OFF/ON ratios as high as 100 and write powers as low as ∼1 × 10 4A cm -2 at room temperature by storing data in the electric polarization direction of a ferroelectric tunnel barrier. The junctions show large, stable, reproducible and reliable tunnel electroresistance, with resistance switching occurring at the coercive voltage of ferroelectric switching. These ferroelectric devices emerge as an alternative to other resistive memories, and have the advantage of not being based on voltage-induced migration of matter at the nanoscale, but on a purely electronic mechanism. © 2012 Macmillan Publishers Limited. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The extent to which notches inhibit axial switching of polarization in ferroelectric nanowires was investigated by monitoring the switching behavior of single crystal BaTiO(3) wires before and after patterning triangular notches along their lengths. Static zero-field domain patterns suggested a strong domain-notch interaction, implying that notches should act as pinning sites for domain wall propagation. Surprisingly though, notches appeared to assist, rather than inhibit, polar switching. The origin of this effect was rationalized using finite element modeling of the electric field distribution along the notched wire; it was found that the air gap associated with the notch acted to enhance the local field, both in the air, and in the adjacent region of the ferroelectric. It seems that this local field enhancement outweighs any pinning interactions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have investigated the nanoscale switching properties of strain-engineered BiFeO(3) thin films deposited on LaAlO(3) substrates using a combination of scanning probe techniques. Polarized Raman spectral analysis indicates that the nearly tetragonal films have monoclinic (Cc) rather than P4mm tetragonal symmetry. Through local switching-spectroscopy measurements and piezoresponse force microscopy, we provide clear evidence of ferroelectric switching of the tetragonal phase, but the polarization direction, and therefore its switching, deviates strongly from the expected (001) tetragonal axis. We also demonstrate a large and reversible, electrically driven structural phase transition from the tetragonal to the rhombohedral polymorph in this material, which is promising for a plethora of applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The pulsed electric acoustic technique, PEA, have been usually applied to probe space charge profiles in polymers. In this work we show preliminary results obtained with lead zirconate-titanate and niobium, PZTN, ferroelectric ceramic samples. Experiments showed that induced charge densities on sample electrodes are mainly due to the ferroelectric polarization of the sample. We present results of the typical PEA response and the procedure to deconvolute the signal in order to obtain the charge densities and the electric field profiles. The PEA setup allows us to show a non-uniform polarization during ferroelectric switching.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have investigated the nanoscale switching properties of strain-engineered BiFeO(3) thin films deposited on LaAlO(3) substrates using a combination of scanning probe techniques. Polarized Raman spectral analysis indicates that the nearly tetragonal films have monoclinic (Cc) rather than P4mm tetragonal symmetry. Through local switching-spectroscopy measurements and piezoresponse force microscopy, we provide clear evidence of ferroelectric switching of the tetragonal phase, but the polarization direction, and therefore its switching, deviates strongly from the expected (001) tetragonal axis. We also demonstrate a large and reversible, electrically driven structural phase transition from the tetragonal to the rhombohedral polymorph in this material, which is promising for a plethora of applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aurivillius phase thin films of Bi5Ti3(FexMn1−x)O15 with x = 1 (Bi5Ti3FeO15) and 0.7 (Bi5Ti3Fe0.7Mn0.3O15) on SiO2-Si(100) and Pt/Ti/SiO2-Si substrates were fabricated by chemical solution deposition. The method was optimized in order to suppress formation of pyrochlore phase Bi2Ti2O7 and improve crystallinity. The structuralproperties of the films were examined by x-ray diffraction, scanning electron microscopy, and atomic force microscopy. Optimum crystallinity and pyrochlore phase suppression was achieved by the addition of 15 to 25 mol. % excess bismuth to the sols. Based on this study, 17.5 mol. % excess bismuth was used in the preparation of Bi2Ti2O7-free films of Bi5Ti3FeO15 on SrTiO3(100) and NdGaO3(001) substrates, confirming the suppression of pyrochlore phase using this excess of bismuth. Thirty percent of the Fe3+ ions in Bi5Ti3FeO15 was substituted with Mn3+ ions to form Bi2Ti2O7-free thin films of Bi5Ti3Fe0.7Mn0.3O15 on Pt/Ti/SiO2-Si, SiO2-Si(100), SrTiO3(100), and NdGaO3(001) substrates. Bi5Ti3FeO15 and Bi5Ti3Fe0.7Mn0.3O15thin films on Pt/Ti/SiO2-Si and SiO2-Si(100) substrates were achieved with a higher degree of a-axis orientation compared with the films on SrTiO3(100) and NdGaO3(001) substrates. Room temperature electromechanical and magnetic properties of the thin films were investigated in order to assess the potential of these materials for piezoelectric,ferroelectric, and multiferroic applications. Vertical piezoresponse force microscopy measurements of the films demonstrate that Bi5Ti3FeO15 and Bi5Ti3Fe0.7Mn0.3O15thin films are piezoelectric at room temperature. Room temperature switching spectroscopy-piezoresponse force microscopy measurements in the presence and absence of an applied bias demonstrate local ferroelectric switching behaviour (180°) in the films. Superconducting quantum interference device magnetometry measurements do not show any room temperature ferromagnetic hysteresis down to an upper detection limit of 2.53 × 10−3 emu; and it is concluded, therefore, that such films are not mutiferroic at room temperature. Piezoresponse force microscopy lithography images of Bi5Ti3Fe0.7Mn0.3O15thin films are presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Multiferroic materials displaying coupled ferroelectric and ferromagnetic order parameters could provide a means for data storage whereby bits could be written electrically and read magnetically, or vice versa. Thin films of Aurivillius phase Bi6Ti2.8Fe1.52Mn0.68O18, previously prepared by a chemical solution deposition (CSD) technique, are multiferroics demonstrating magnetoelectric coupling at room temperature. Here, we demonstrate the growth of a similar composition, Bi6Ti2.99Fe1.46Mn0.55O18, via the liquid injection chemical vapor deposition technique. High-resolution magnetic measurements reveal a considerably higher in-plane ferromagnetic signature than CSD grown films (MS = 24.25 emu/g (215 emu/cm3), MR = 9.916 emu/g (81.5 emu/cm3), HC = 170 Oe). A statistical analysis of the results from a thorough microstructural examination of the samples, allows us to conclude that the ferromagnetic signature can be attributed to the Aurivillius phase, with a confidence level of 99.95%. In addition, we report the direct piezoresponse force microscopy visualization of ferroelectric switching while going through a full in-plane magnetic field cycle, where increased volumes (8.6 to 14% compared with 4 to 7% for the CSD-grown films) of the film engage in magnetoelectric coupling and demonstrate both irreversible and reversible magnetoelectric domain switching.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Synthesis and structural characterization of two novel symmetrical banana mesogens built from resorcinol with seven phenyl rings linked by ester and imine with a terminal dodecyl/dodecyloxy chain has been carried out. Density functional theory (DFT) has been employed for obtaining the geometry optimized structures, the dipole moments and C-13 NMR chemical shifts. The HOPM and DSC studies revealed enantiotropic B-2 and B-7 phases for the dodecyl and dodecyloxy homologs respectively. The powder X-ray studies of both the mesogens indicate the presence of layer ordering. The polarization measurements reveal an anti-ferroelectric switching for the B-2 phase of the dodecyl homolog whose structure has been identified as SmCSPA. The B-7 phase of the dodecyloxy homolog was found to be non-switchable. High resolution C-13 NMR study of the dodecyl homolog in its mesophase has been carried out. C-13-H-1 dipolar couplings obtained from the 2-dimensional separated local field spectroscopy experiment were used to obtain the orientational order parameters of the different segments of the mesogen. Very large C-13-H-1 dipolar couplings observed for the carbons of the central phenyl ring (9.7-12.3 kHz) in comparison to the dipolar couplings of those of the side arm phenyl rings (less than 3 kHz) are a direct consequence of the ordering in the banana phase and the shape of the molecule. From the ratio of the local order parameter values, the bent-angle of the mesogen could be determined in a straight forward manner to be 120.5 degrees.