992 resultados para Fermentation rate


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The adapted metabolic response of commercial wine yeast under prolonged exposure to concentrated solutes present in Icewine juice is not fully understood. Presently, there is no information regarding the transcriptomic changes in gene expression associated with the adaptive stress response ofwine yeast during Icewine fermentation compared to table wine fermentation. To understand how and why wine yeast respond differently at the genomic level and ultimately at the metabolic level during Icewine fermentation, the focus ofthis project was to identify and compare these differences in the wine yeast Saccharomyces cerevisiae KI-Vll16 using cDNA microarray technology during the first five days of fermentation. Significant differences in yeast gene expression patterns between fermentation conditions were correlated to differences in nutrient utilization and metabolite production. Sugar consumption, nitrogen usage and metabolite levels were measured using enzyme assays and HPLC. Also, a small subset of differentially expressed genes was verified using Northern analysis. The high osmotic stress experienced by wine yeast throughout Icewine fermentation elicited changes in cell growth and metabolism correlating to several fermentation difficulties, including reduced biomass accumulation and fermentation rate. Genes associated with carbohydrate and nitrogen transport and metabolism were expressed at lower levels in Icewine juice fermenting cells compared to dilute juice fermenting cells. Osmotic stress, not nutrient availability during Icewine fermentation appears to impede sugar and nitrogen utilization. Previous studies have established that glycerol and acetic acid production are increased in yeast during Icewine fermentation. A gene encoding for a glycerollW symporter (STL1) was found to be highly expressed up to 25-fold in the i Icewine juice condition using microarray and Northern analysis. Active glycerol transport by yeast under hyperosmotic conditions to increase cytosolic glycerol concentration may contribute to reduced cell growth observed in the Icewine juice condition. Additionally, genes encoding for two acetyl CoA synthetase isoforms (ACSl and ACS2) were found to be highly expressed, 19- and II-fold respectively, in dilute juice fermenting cells relative to the Icewine juice condition. Therefore, decreased conversion of acetate to acetyl-CoA may contribute to increased acetic acid production during Icewine fermentation. These results further help to explain the response of wine yeast as they adapt to Icewine juice fermentation. ii

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Increasing evidence is emerging that the performance of enhanced biological phosphorus removal (EBPR) systems relies on not only the total amount but also the composition of volatile fatty acids (VFAs). Domestic wastewater often contains limited amounts of VFAs with acetic acid typically being the dominating species. Consequently, prefermenters are often employed to generate additional VFAs to meet the demand for carbon by EBPR and/or denitrification processes. Limited knowledge is currently available on the effects of operational conditions on the production rate and composition of VFAs in prefermenters. In this study, a series of controlled batch experiments were conducted with sludge from a full-scale prefermenter to determine the impact of solids concentration, pH and addition of molasses on prefermentation processes. It was found that an increase in solids concentration enhanced total VFA production with an increased propionic acid fraction. The optimal pH for prefermentation was in the range of 6-7 with significant productivity loss when pH was below 5.5. Molasses addition significantly increased the production of VFAs particularly the propionic acid. However, the fermentation rate was likely limited by the biological activity of the sludge rather than by the amount of molasses added.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mestrado Vinifera Euromaster - Instituto Superior de Agronomia - UL

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ruminant husbandry is a major source of anthropogenic greenhouse gases (GHG). Filling knowledge gaps and providing expert recommendation are important for defining future research priorities, improving methodologies and establishing science-based GHG mitigation solutions to government and non-governmental organisations, advisory/extension networks, and the ruminant livestock sector. The objectives of this review is to summarize published literature to provide a detailed assessment of the methodologies currently in use for measuring enteric methane (CH4) emission from individual animals under specific conditions, and give recommendations regarding their application. The methods described include respiration chambers and enclosures, sulphur hexafluoride tracer (SF6) technique, and techniques based on short-term measurements of gas concentrations in samples of exhaled air. This includes automated head chambers (e.g. the GreenFeed system), the use of carbon dioxide (CO2) as a marker, and (handheld) laser CH4 detection. Each of the techniques are compared and assessed on their capability and limitations, followed by methodology recommendations. It is concluded that there is no ‘one size fits all’ method for measuring CH4 emission by individual animals. Ultimately, the decision as to which method to use should be based on the experimental objectives and resources available. However, the need for high throughput methodology e.g. for screening large numbers of animals for genomic studies, does not justify the use of methods that are inaccurate. All CH4 measurement techniques are subject to experimental variation and random errors. Many sources of variation must be considered when measuring CH4 concentration in exhaled air samples without a quantitative or at least regular collection rate, or use of a marker to indicate (or adjust) for the proportion of exhaled CH4 sampled. Consideration of the number and timing of measurements relative to diurnal patterns of CH4 emission and respiratory exchange are important, as well as consideration of feeding patterns and associated patterns of rumen fermentation rate and other aspects of animal behaviour. Regardless of the method chosen, appropriate calibrations and recovery tests are required for both method establishment and routine operation. Successful and correct use of methods requires careful attention to detail, rigour, and routine self-assessment of the quality of the data they provide.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Zootecnia - FMVZ

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this work was to evaluate the effect of processing two corn hybrids conserved, dry and humid grains, the dry matter (DM) and crude protein (CP) degradability in situ. The particle size was determined and difference was verified in MGD (Medium Geometric Diameter) of processed ingredients. Three sheep were used with rumen canulated, in a completely randomized design, using a factorial outline 2 x 2 x 3, being two corn hybrid, two conservation methods and three processing forms (whole, coarsely and finely ground), with five times of incubation (3, 6, 12, 24 and 48 hours). The fraction A in SDC (silage of dent corn) of DM was superior to GDC (grain of dent corn) in all of the particles size. The ensiling process increased the DM solubility, reducing the fraction B in comparison to dry grain. The values regarding the fractions DP and DE the 5% per hour of the protein, were larger for SDC and GDC, it presents a decreasing when the incubation time advances. The fermentation rate was superior for SDC and GDC. The ensiling process has positive effect in the decreasing of DM and CP in comparison to GDC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El propósito de este trabajo fue evaluar la incidencia de la concentración de nitrógeno prontamente asimilable (NPA) sobre la velocidad y duración de la fermentación alcohólica de los mostos de uva. El experimento se diseñó con tres tratamientos (A=testigo; B=agregado de PO4H(NH4)2 50 mg/L; C=agregado de PO4H(NH4)2 100 mg/L) y cuatro repeticiones. Se realizaron microvinificaciones con jugo de uva pasteurizado var. Chardonnay, inoculado con Saccharomyces cerevisiae cepa FCA 32. La fermentación se condujo a 25 °C. La concentración de NPA fue medida por titulación en medio formol. La velocidad de fermentación fue determinada por pérdida de peso. La velocidad máxima de fermentación se alcanzó al tercer día. Existen diferencias significativas entre la velocidad máxima alcanzada por el testigo y por los tratamientos B y C pero no hay diferencias significativas entre las velocidades máximas alcanzadas por los tratamientos B y C. La velocidad máxima de fermentación alcanzada por el tratamiento B (agregado de 50 mg/L de PO4H(NH4)2) fue 57 % superior respecto del testigo, mientras que el tratamiento C (agregado de 100 mg/L de PO4H(NH4)2) fue 53 % superior respecto del mismo testigo La velocidad máxima de fermentación aumentó con la adición de nitrógeno, pero no se observan diferencias entre las distintas dosis empleadas. La duración media de la fermentación resulta significativamente diferente para los tres tratamientos: 9.25 días para el testigo, 7.5 días para el tratamiento B y 6.25 días para el tratamiento C. El agregado de PO4H(NH4)2 disminuye la duración de la fermentación en las condiciones de trabajo. La duración de la fermentación del tratamiento B (agregado de 50 mg/L de PO4H(NH4)2) fue del 81 % respecto del testigo 100 %, mientras que el tratamiento C (agregado de 100 mg/L de PO4H(NH4)2) fue del 67 %, respecto del mismo testigo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Incubations were carried out with batch cultures to study the effects of different nitrogen (N) sources on in vitro fermentation by ruminal micro-organisms of two substrates of variable fermentation rate. The substrates were composed by starch and cellulose in proportions of 75:25 (starch) or 25:75 (cellulose). Three treatments were made by replacing ammonia-N (NH4Cl) with purified soyabean protein (SP) at levels of 0 (NNP), 50% (S50) and 100% (S100) of total N. Compared with NNP, S50 and S100 treatments increased CH4 production by 51.0 and 50.6% for starch and by 7.7 and 29.7% for cellulose substrates, respectively. The increases in volatile fatty acids (VFA) production were 4.4 and 6.3% for starch and 33.1 and 58.9% for cellulose substrates, respectively. These results indicate that the influence of N source on CH4 and VFA production are influenced by the characteristics of the incubated substrate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pouco se sabe sobre o efeito do substrato e a interação entre as leveduras selvagens e bactérias do gênero Lactobacillus na fermentação alcoólica, pois os estudos tem se concentrado na avaliação dos efeitos da contaminação por um ou outro contaminante separadamente. Diante disso, este trabalho teve como objetivos estudar o efeito do substrato e das condições de tratamento do fermento sobre as fermentações contaminadas com ambos os micro-organismos, leveduras S. cerevisiae selvagens (três linhagens apresentando colônias rugosas e células dispostas em pseudohifas) e Lactobacillus fermentum, tendo a linhagem industrial de S. cerevisiae PE-2 como levedura do processo. Foram realizadas fermentações em batelada em mosto de caldo e de melaço, sem reciclo e com reciclo celular, utilizando tanto a cultura pura da linhagem PE-2 quanto as culturas mistas com as linhagens rugosas e ou L. fermentum. Foram avaliadas modificações no tratamento ácido do fermento, visando o controle do crescimento dos contaminantes sem afetar a levedura do processo. Em seguida, foram conduzidas fermentações contaminadas e não contaminadas submetidas ao tratamento ácido combinado com adição de etanol, tanto em caldo quanto em melaço, utilizando-se PE-2, uma das linhagens rugosas e L. fermentum. A atividade da invertase extracelular foi também avaliada em ambos os substratos para os micro-organismos estudados, em condições de crescimento. Concluiu-se que o tipo de substrato de fermentação, caldo de cana ou melaço, influenciou o desempenho da linhagem industrial PE-2 assim como afetou o desenvolvimento das contaminações com as leveduras rugosas S. cerevisiae na presença ou ausência da bactéria L. fermentum, em fermentações sem reciclo celular. O efeito da contaminação foi mais evidente quando se utilizou caldo de cana do que melaço como substrato, no caso da contaminação com leveduras rugosas, e o inverso no caso da contaminação com L. fermentum. O efeito da contaminação sobre a eficiência fermentativa foi maior na presença da levedura rugosa do que com a bactéria, e a contaminação dupla (tanto com a levedura rugosa quanto com a bactéria) não teve efeito maior sobre a eficiência fermentativa do que a contaminação simples, por um ou por outro micro-organismo isoladamente, especialmente na fermentação em batelada com reciclo celular, independentemente do substrato. Nas fermentações com reciclo de células, o efeito do substrato foi menos evidente. O controle do crescimento das linhagens rugosas pode ser realizado modificando o tratamento ácido normalmente realizado na indústria, seja pela adição de etanol à solução ácida ou pelo abaixamento do pH, dependendo da linhagem rugosa. O tratamento combinado baixo pH (2,0) + 13% etanol afetou a fisiologia da linhagem industrial, trazendo prejuízos à fermentação com reciclo celular, com pequeno controle sobre o crescimento da levedura rugosa e causando morte celular à L. fermentum. A diferença na atividade invertásica entre as linhagens rugosas e industrial de S. cerevisiae pode ser a responsável pela fermentação lenta apresentada pelas linhagens rugosas quando presentes na fermentação, sendo não significativa a influência do substrato sobre a atividade dessa enzima.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Icewine is an intensely sweet, unique dessert wine fennented from the juice of grapes that have frozen naturally on the vine. The juice pressed from the frozen grapes is highly concentrated, ranging from a minimum of 35° Brix to approximately 42° Brix. Often Icewine fennentations are sluggish, taking months to reach the desired ethanol level, and sometimes become stuck. In 6 addition, Icewines have high levels of volatile acidity. At present, there is no routine method of yeast inoculation for fennenting Icewine. This project investigated two yeast inoculum levels, 0.2 gIL and 0.5 gIL. The fennentation kinetics of inoculating these yeast levels directly into the sterile Icewine juice or conditioning the cells to the high sugar levels using a step wise acclimatization procedure were also compared. The effect of adding GO-FERM, a yeast nutrient, was also assessed. In the sterile fennentations, yeast inoculated at 0.2 gIL stopped fennenting before the required ethanol level was achieved, producing only 7.8% (v/v) and 8.1 % (v/v) ethanol for the direct and conditioned inoculations, respectively. At 0.5 gIL, the stepwise conditioned cells fennented the most sugar, producing 12.2% (v/v) ethanol, whereas the direct inoculum produced 10.5% (v/v) ethanol. The addition of the yeast nutrient GO-FERM increased the rate of biomass accumulation, but reduced the ethanol concentration in wines fennented at 0.5 gIL. There was no significant difference in acetic acid concentration in the final wines across all treatments. Fennentations using unfiltered Icewine juice at the 0.5 gIL inoculum level were also compared to see if the effects of yeast acclimatization and micronutrient addition had the same impact on fennentation kinetics and yeast metabolite production as observed in the sterile-filtered juice fennentations. In addition, a full descriptive analysis of the finished wines was carried out to further assess the impact of yeast inoculation method on Icewine sensory quality. At 0.5 gIL, the stepwise conditioned cells fennented the most sugar, producing 11.5% (v/v) ethanol, whereas the direct inoculum produced 10.0% (v/v) ethanol. The addition of the yeast nutrient GO-FERM increased the peak viable cell numbers, but reduced the ethanol concentration in wines fennented at 0.5 gIL. There was a significant difference 7 in acetic acid concentration in the final wines across all treatments and all treatments affected the sensory profiles of the final wines. Wines produced by direct inoculation were described by grape and raisin aromas and butter flavour. The addition of GO-FERM to the direct inoculation treatment shifted the aroma/flavour profiles to more orange flavour and aroma, and a sweet taste profile. StepWise acclimatizing the cells resulted in wines described more by peach and terpene aroma. The addition of GO-FERM shifted the profile to pineapple and alcohol aromas as well as alcohol flavour. Overall, these results indicate that the addition of GO-FERM and yeast acclimatization shortened the length of fermentation and impacted the sensory profiles of the resultant wines.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A study was carried out to determine the influence of fibrolytic enzymes derived from mesophilic or thermophilic fungal sources, added at ensiling, on time-course fermentation characteristics and in vitro rumen degradation of maize silage. The mesophilic enzyme was a commercial product derived from Trichodenna reesei (L), whereas the thermophilic enzyme was a crude extract produced from Thermoascus aurantiacus (Ta) in this laboratory. The fungus was cultured using maize cobs as a carbon source. The resulting fermentation extract was deionised to remove sugars and characterised for its protein concentration, main and side enzymic activities, optimal pH, protein molecular mass and isoelectric point. In an additional study, both enzymes were added to maize forage (333.5 g DM/kg, 70.0, 469.8, 227.1 and 307.5 g/kg DM of CP, NDF, ADF and starch, respectively) at two levels each, normalized according to xylanase activity, and ensiled in 0.5 kg capacity laboratory minisilos. Duplicate silos were opened at 2, 4, 8, 15, and 60 days after ensiling, and analysed for chemical characteristics. Silages from 60 days were bulked and in vitro gas production (GP) and organic matter degradability (OMD) profiles evaluated using the Reading Pressure Technique (RPT), in a completely randomised design. The crude enzyme extract contained mainly xylanase and endoglucanase activities, with very low levels of exoglucanase, which probably limited hydrolysis of filter paper. The extract contained three major protein bands of between 29 and 55 kDa, with mainly acidic isoelectric points. Ensiling maize with enzymes lowered (P < 0.05) the final silage pH, with this effect being observed throughout the ensiling process. All enzyme treatments reduced (P < 0.05) ADF contents. Treatments including Ta produced more gas (P < 0.05) than the controls after 24 h incubation in vitro, whereas end point gas production at 96 h was not affected. Addition of Ta increased (P < 0.01) OMD after 12 h (410 and 416 g/kg versus 373 g/kg), whereas both L and Ta increased (P < 0.05) OMD after 24 h. Addition of enzymes from mesophilic or thermophilic sources to maize forage at ensiling increased the rate of acidification of the silages and improved in vitro degradation kinetics, suggesting an improvement in the nutritive quality. (C) 2003 Elsevier B.V All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a simple technique for the fermentation of untreated or partly-treated leafy biomass in a digester of novel design without incurring the normal problems of feeding, floating and scum formation of feed, etc. The solid phase fermentation studied consists of a bed of biomass frequently sprinkled with an aqueous bacterial inoculum and recycling the leachate to conserve moisture and improve the bacterial dispersion in the bed. The decomposition of the leaf biomass and water hyacinth substrates used in this study was rapid, taking 45 and 30 days for the production of 250 and 235 l biogas per kg total solids (TS) respectively, for the above mentioned substrates at a daily sprinkled volume of 26 ml cm−2 of bed per day sprinkled at 12 h intervals. Very little volatile fatty acid (VFA) intermediates accumulated in the liquid sprinkled, suggesting acidogenesis to be rate-limiting in this process. From the pattern of VFA and gas produced it is concluded that most of the biogas produced is from the biomass bed, thus making the operation of a separate methanogenic reactor unnecessary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fish sauce is a popular fermented product used in south Asian countries which is made from different small fishes in this research work it was attempted to produce fish sauce from kilka of the Caspian sea, the fish sauce was made from three models of kilka ,such as whole kilka , cooked whole kilka and dressed kilka , each of these models treated it four different fashions of fermentation such as:1- Traditional method, 2- Enzymatic method 3- Microbial method, 4- Mixture of enzyme and microb The results of this investigation showed that time of fermentation for the traditional method was six month, enzymatic method one month, microbial method 3 month and the mixture of enzyme and microb 1 month. The rate of fermentation was least for dressed Kilka, microbial and biochemical changes of Kilka fish sauce were evaluated, total bacterial count was 2.1-6.15 log cfu/ml total volatile nitrogen (TVN) in samples recorded was 250 mg /100g, the amount of protein varied between 10-13 percent, the name of commercial enzymes added was Protamex and Flavourzyme, the bacteria added was L act ob acillus and Pediococous, fish sauce containers fish and 20% salt, temperature of keeping for fermentation was 37 degree c for 6 month.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Icewine is an intensely s\veet dessert \vine fermented from the juice of naturally frozen grapes. Icewine fermentation poses many challenges such as failure to reach desired ethanol levels and production of high levels of volatile acidity in the fonn of acetic acid. This study investigated the impact of micronutrient addition (GO-FERM® and NATSTEP®) during the rehydration stage of the commercial \vine yeast Saccharomyces cerevisiae KI-VIII6 during Ice\vine fermentation. Sterile-filtered and unfiltered Riesling Ice\vine juice was inoculated \vith yeast rehydrated under four different conditions: in water only; with GO-FERM®; with NATSTEP®; or the combination of both micronutrient products in the rehydration water. Using sterile-filtered Icewine juice, yeast rehydration had a positive impact of reducing the rate of acetic acid produced as a function of sugar consumed, reducing the ratio of acetic acid/ethanol and reducing the ratio of acetic acid/glycerol. In the sterile-filtered fermentation, yeast rehydrated with micronutrients generated 9-times less acetic acid per gram of sugar in the first 48 hours compared to yeast rehydrated only \vith water and resulted in a 17% reduction in acetic acid in the final \vine \vhen normalized to sugar consumed. However, the sterile-filtered fermentations likely became stuck due to the overc1arification of the juice as evidenced from the low sugar consumption (117 gIL) that could not be completely overcome by the micronutrient treatments (144 gIL sugar consumed) to reach a target ethanol of IO%v/v. Contrary to \vhat \vas observed in the sterile-filtered treatements, using unfiltered Ice\vine juice, yeast micronutrient addition had no significant impact of reducing the rate of acetic acid produced as a function of sugar consumed, reducing the ratio of acetic acid/ethanol and reducing the ratio of acetic acid/glycerol. However, in the unfiltered fermentation, micronutrient addition during yeast rehydration caused a reduction in the acetic acid produced as a function of sugar consumed up to 150 giL sugar consumed.. In contrast to the sterile-filtered fermentations, the unfiltered fermentations did not become stuck as evidenced from the higher sugar consumption (l47-174g1L). The largest effects of micronutrient addition are evident in the first two days of both sterile and unfiltered fermentations.