928 resultados para Fenton reaction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zn-EDTA degradabilty by catechol-driven Fenton reaction was studied. Response surface methodology central composite design was employed to maximize this complex degradation. Theoretical speciation calculations were in good agreement with the experimental results. Fenton and Fenton type treatments are typically thought to be applicable only in the highly acidic range, representing a major operational constraint. Interestingly, at optimized concentrations, this CAT-driven Fenton reaction at pH 5.5 achieved 100% Zn-EDTA degradation; 60% COD and 17% TOC removals, using tiny amounts of CAT (50 µM), Fe(III) (445 µM) and H2O2 (20 mM) with no evident ferric sludge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The addition of 0.5 mM catechol is shown to accelerate the degradation and mineralization of the anionic surfactant DOWFaX (TM) 2A1 (sodium dodecyldiphenyloxide disulfonate) under conventional Fenton reaction conditions (Fe(II) plus H(2)O(2) at pH 3). The catalytic effect causes a 3-fold increase in the initial rate (up to ca. 20 min) of conversion of the surfactant to oxidation products (apparent first-order rate constants of 0.021 and 0.061 min(-1) in the absence and presence of catechol, respectively). Although this catalytic rate increase persists for a certain amount of time after complete disappearance of catechol itself (ca. 8 min), the reaction rate begins to decline slowly after the initial 20 min towards that observed in the absence of added catechol. Total organic carbon (TOC) measurements of net mineralization and cyclic voltammetric and high performance liquid chromatographic (HPLC) measurements of the initial rate of reaction of catechol and the surfactant provide insight into the role of catechol in promoting the degradation of the surfactant and of degradation products as the eventual inhibitors of the Fenton reaction. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The degradation of DDT [1,1-bis(4-chlorophenyl)-2,2,2-trichloroethane] and DDE [2,2-bis(4-chlorophenyl)-1,1-dichloroethylene] in highly and long-term contaminated soil using Fenton reaction in a slurry system is studied in this work. The influence of the amount of soluble iron added to the slurry versus the mineral iron originally present in the soil, and the influence of H2O2 concentration on the degradation process are evaluated. The main iron mineral species encountered in the soil, hematite (Fe2O3), did not show catalytic activity in the decomposition of H2O2, resulting in low degradation of DDT (24%) and DDE (4%) after 6 h. The addition of soluble iron (3.0 mmol L-1) improves the reaction reaching 53% degradation of DDT and 46% of DDE. The increase in iron concentration from 3.0 to 24 mmol L-1 improves slightly the degradation rate of the contaminants. However, similar degradation percentages were obtained after 24 h of reaction. It was observed that low concentrations of H2O2 were sufficient to degrade around 50% of the DDT and DDE present in the soil, while higher degradation percentages were achieved only with high amounts of this reagent (1.1 mol L-1). (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The addition of Cu2+ ions to the classical Fenton reaction (Fe2+ plus H2O2 at pH 3) is found to accelerate the degradation of organic compounds. This synergic effect causes an approximately 15 % additional reduction of the total organic carbon (TOC), representing an overall improvement of the efficiency of the mineralization of phenol. Although Fe2+ exhibits a high initial rate of degradation, the degradation is not complete due to the formation of compounds refractory to the hydroxyl radical. The interference of copper ions on the degradation of phenol by the Fenton reaction was investigated. In the presence of Cu2+, the degradation is slower, but results in a greater reduction of TOC at the end of the reaction (t = 120 min). In the final stages of the reaction, when the Fe3+ in the solution is complexed in the form of ferrioxalate, the copper ions assume the role of the main catalyst of the degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel amperometric sensor based on the incorporation of ruthenium oxide hexacyanoferrate (RuOHCF) into multiwalled carbon nanotubes (MWCNTs) immobilized on a glassy carbon electrode is described. Cyclic voltammetry experiments indicated that the cathodic reduction of hydrogen peroxide at the RuOHCF/MWCNTs100/GC modified electrode is facilitated, occurring at 0.0 V vs. Ag/AgCl/KCl(sat). Following the optimization of the experimental conditions, the proposed sensor presented excellent analytical properties for hydrogen peroxide determination, with a low limit of detection (4.7 mu mol L-1), a large dynamic concentration range (0.1-10 mmol L-1) and a sensitivity of 1280 mu A mmol(-1) L cm(-2). The usefulness of the RuOHCF/MWCNTs100/GC electrochemical sensor was confirmed by monitoring the consumption of hydrogen peroxide during the degradation of phenol by the Fenton reaction. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study of the interference of Zn2+ ions on phenol degradation by Fenton reaction (Fe2+/Fe3(+) + H2O2) is reported. One of the first intermediates formed in the reaction, catechol, can reduce Fe3+ to Fe2+ and, in the presence of H2O2 initiates an efficient catalytic redox cycle. In the initial stages of the reaction, this catechol-mediated cycle becomes the principal route of thermal degradation of phenol and its oxidation products. The Zn2+ ion addition enhances the persistence time of catechol, probably by stabilization of the corresponding semiquinone radical via complexation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study of the interference of Zn2+ ions on phenol degradation by Fenton reaction (Fe2+/Fe3+ + H2O2) is reported. One of the first intermediates formed in the reaction, catechol, can reduce Fe3+ to Fe2+ and, in the presence of H2O2 initiates an efficient catalytic redox cycle. In the initial stages of the reaction, this catechol-mediated cycle becomes the principal route of thermal degradation of phenol and its oxidation products. The Zn2+ ion addition enhances the persistence time of catechol, probably by stabilization of the corresponding semiquinone radical via complexation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The addition of Cu2+ ions to the classical Fenton reaction (Fe2+ plus H2O2 at pH 3) is found to accelerate the degradation of organic compounds. This synergic effect causes an approximately 15 % additional reduction of the total organic carbon (TOC), representing an overall improvement of the efficiency of the mineralization of phenol. Although Fe2+ exhibits a high initial rate of degradation, the degradation is not complete due to the formation of compounds refractory to the hydroxyl radical. The interference of copper ions on the degradation of phenol by the Fenton reaction was investigated. In the presence of Cu2+, the degradation is slower, but results in a greater reduction of TOC at the end of the reaction (t = 120 min). In the final stages of the reaction, when the Fe3+ in the solution is complexed in the form of ferrioxalate, the copper ions assume the role of the main catalyst of the degradation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Discoloration and mineralization of Reactive Red HE-3B were studied by using a laponite clay-based Fe nanocomposite (Fe-Lap-RD) as a heterogeneous catalyst in the presence of H2O2 and UV light. Our experimental results clearly indicate that Fe-Lap-RD mainly consists of Fe2O3 (meghemite) and Fe2Si4O10(OH)2 (iron silicate hydroxide) which have tetragonal and monoclinic structures, respectively, and has a high specific surface area (472m(2) / g) as well as a high total pore volume (0.547 cm(3)/g). It was observed that discoloration of HE-3B undergoes a much faster kinetics than mineralization of HE-3B. It was also found that initial HE-3B concentration, H2O2 concentration, UV light wavelength and power, and Fe-Lap-RD catalyst loading are the four main factors that can significantly influence the mineralization of HE-3B. At optimal conditions, complete discoloration of 100 mg/L HE-3B can be achieved in 30 min and the total organic carbon removal ratio can attain 76% in 120 min, illustrating that Fe-Lap-RD has a high photo-catalytic activity in the photo-assisted discoloration and mineralization of HE-3B in the presence of UV light (254nm) and H2O2. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel nanocomposite of iron oxide and silicate, prepared through a reaction between a solution of iron salt and a dispersion of Laponite clay, was used as a catalyst for the photoassisted Fenton degradation of azo-dye Orange II. This catalyst is much cheaper than the Nafion-based catalysts, and our results illustrate that it can significantly accelerate the degradation of Orange II under the irradiation of UV light (lambda = 254 nm). An advantage of the catalyst is its long-term stability that was confirmed through using the catalyst for multiple runs in the degradation of Orange II. The effects of the H2O2 molar concentration, solution pH, wavelength and power of the LTV light, catalyst loading, and initial Orange II concentration on the degradation of Orange 11 were studied in detail. In addition, it was also found that discoloration of Orange 11 undergoes a faster kinetics than mineralization of Orange II and 75% total organic carbons of 0.1 mM Orange II can be eliminated after 90 min in the presence of 1.0 g of Fe-nanocomposite/L, 4.8 mM H2O2, and 1 x 8W UVC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The brown rot fungus Wolfiporia cocos and the selective white rot fungus Perenniporia medulla-panis produce peptides and phenolate-derivative compounds as low molecular weight Fe(3+)-reductants. Phenolates were the major compounds with Fe(3+)-reducing activity in both fungi and displayed Fe(3+)-reducing activity at pH 2.0 and 4.5 in the absence and presence of oxalic acid. The chemical structures of these compounds were identified. Together with Fe(3+) and H(2)O(2) (mediated Fenton reaction) they produced oxygen radicals that oxidized lignocellulosic polysaccharides and lignin extensively in vitro under conditions similar to those found in vivo. These results indicate that, in addition to the extensively studied Gloeophyllum trabeum-a model brown rot fungus-other brown rot fungi as well as selective white rot fungi, possess the means to promote Fenton chemistry to degrade cellulose and hemicellulose, and to modify lignin. Moreover, new information is provided, particularly regarding how lignin is attacked, and either repolymerized or solubilized depending on the type of fungal attack, and suggests a new pathway for selective white rot degradation of wood. The importance of Fenton reactions mediated by phenolates operating separately or synergistically with carbohydrate-degrading enzymes in brown rot fungi, and lignin-modifying enzymes in white rot fungi is discussed. This research improves our understanding of natural processes in carbon cycling in the environment, which may enable the exploration of novel methods for bioconversion of lignocellulose in the production of biofuels or polymers, in addition to the development of new and better ways to protect wood from degradation by microorganisms.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There is an increasing need to treat effluents contaminated with phenol with advanced oxidation processes (AOPs) to minimize their impact on the environment as well as on bacteriological populations of other wastewater treatment systems. One of the most promising AOPs is the Fenton process that relies on the Fenton reaction. Nevertheless, there are no systematic studies on Fenton reactor networks. The objective of this paper is to develop a strategy for the optimal synthesis of Fenton reactor networks. The strategy is based on a superstructure optimization approach that is represented as a mixed integer non-linear programming (MINLP) model. Network superstructures with multiple Fenton reactors are optimized with the objective of minimizing the sum of capital, operation and depreciation costs of the effluent treatment system. The optimal solutions obtained provide the reactor volumes and network configuration, as well as the quantities of the reactants used in the Fenton process. Examples based on a case study show that multi-reactor networks yield decrease of up to 45% in overall costs for the treatment plant. (C) 2010 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Estudi elaborat a partir d’una estada a la Plataforma Solar de Almería entre desembre del 2006 i gener del 2007. S’ha dut a terme la degradació en planta pilot dels colorants reactius Procion Red H-E7B i Cibacron Red FN-R mitjançant el procés de foto-Fenton aplicat com a tractament únic i com a pretractament d’un procés biològic. El procés de foto-Fenton, assistit amb llum solar, es va realitzar en un fotoreactor solar tipus Col•lector Parabòlic Compost (CPC) i el tractament biològic en un Reactor de Biomassa Immobilitzada (RBI). Com a punt de partida, i amb l’objectiu d’estudiar la reproductibilitat del sistema, es van prendre resultats obtinguts d’experiments realitzats prèviament a escala de laboratori i amb llum artificial. El paràmetre Carboni Orgànic Total (COT) es va emprar com a indicador de l’eliminació dels colorants i dels seus intermedis. En aplicar únicament el procés de foto-Fenton com a tractament, concentracions de 10 mg•l-1 de Fe (II) i 250 mg•l-1 de H2O2 per degradar 250 mg•l-1 Procion Red H-E7B, i de 20 mg•l-1 de Fe (II) i 500 mg•l-1 de H2O2 per degradar 250 mg•l-1 Cibacron Red FN-R, van reproduir els resultants obtinguts al laboratori, amb uns nivells d’eliminació de COT del 82 i 86%, respectivament. A més, l’ús beneficiós de la llum solar en el procés de foto-Fenton, juntament amb la configuració del CPC, van incrementar la velocitat de degradació respecte als resultats previs, permetent la reducció de la concentració de Fe (II) de 10 a 2 mg•l-1 (Procion Red H-E7B) i de 20 a 5 mg•l-1 (Cibacron Red FN-R) sense pèrdues d’efectivitat. D’altre banda, el sistema combinat foto-Fenton/tractament biològic en planta pilot, unes concentracions d’oxidant de 225 mg•l-1 H2O2 per Cibacron Red FN-R i 65 mg•l-1 H2O2 per Procion Red H-E7B van ser suficients per generar solucions intermèdies biodegradables i alimentar així el RBI, millorant inclús els resultats obtinguts prèviament al laboratori.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A flow injection spectrophotometric system was projected for monitoring hydrogen peroxide during photodegradation of organic contaminants in photo-Fenton processes (Fe2+/H2O2/UV). Sample is injected manually in a carrier stream and then receives by confluence a 0.1 mol L-1 NH4VO3 solution in 0.5 mol L-1 H2SO4 medium. The product formed shows absorption at 446 nm which is recorded as a peak with height proportional to H2O2 concentration. The performance of the proposed system was evaluated by monitoring the consumption of H2O2 during the photodegradation of dichloroacetic acid solution by foto-Fenton reaction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The mechanism and applications of the Fenton reaction assisted by iron-reducing phenolic compounds (IRPC) is reviewed. The presence of IRPC leads to the formation of a larger number of free radicals. The relationship between the redox potential and the IRPC structure is discussed. The effect of humic substances in the degradation of xenobiotics is also included, since these substances are able to reduce metallic ions. The natural occurrence of Fe3+/H2O2/IRPC in wood biodegradation processes, as well as their application is also discussed. The review concludes with the advantages of the Fe3+/H2O2/IRPC systems and some considerations for further process optimization and their applications at industrial levels.