987 resultados para Fenton oxidation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis Entitled Colour removal from dye house effluents using zero valent iron and fenton oxidation.Findings reported on kinetic profile during oxidation of dyes with Fenton’s reagent are in good agreement with observations of earlier workers on other organic substrates. This work goes a step further. Critical concentration of the dye at which the reaction mechanism undergoes transition has been identified.The oxidation of Reactive Yellow showed that the initial rates for decolorization increased linearly with an increase in hydrogen peroxide concentration over the range studied. Fenton oxidation of all dyes except Methylene Blue showed that the initial rates increased linearly with an in the ferrous sulphate concentration. This increase was observed only up to an optimum concentration beyond which further increase resulted in a decrease in the initial rates. Variation of initial rates with Ferrous sulphate concentration resulted in a linear plot passing through the origin indicating that the reaction is first order with respect to ferrous sulphate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work the use of a coupled process, soil washing and photo-Fenton oxidation, was investigated for remediation of a soil contaminated with p.p'-DDT (DDT) and p.p'-DDE (DDE), and a soil artificially contaminated with diesel. In the soil washing experiments,Triton X-100(TX-100) aqueous solutions were used at different concentrations to obtain wastewaters with different compositions. Removal efficiencies of 66% (DDT). 80% (DDE) and 100% (diesel) were achieved for three sequential washings using a TX-100 solution strength equivalent to 12 times the effective critical micelle concentration of the surfactant (12 CMC(eff)). The wastewater obtained was then treated using a solar photo-Fenton process. After 6 h irradiation, 99, 95 and 100% degradation efficiencies were achieved for DDT, DDE and diesel, respectively. In all experiments, the concentration of dissolved organic carbon decreased by at least 95%, indicating that residual concentration of contaminants and/or TX-100 in the wastewater was very low. The co-extraction of metals was also evaluated. Among the metals analyzed (Pb, Cr, Ni, Cu. Cd, Mn and Co), only Cr and Mn were detected in the wastewater at concentrations above the maximum value permitted by current Brazilian legislation. The effective removal of contaminants from soil by the TX-100 washing process, together with the high degradation efficiency of the solar photo-Fenton process, suggests that this procedure could be a useful option for soil remediation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A highly concentrated aqueous saline-containing solution of phenol, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2.4-DCP) was treated by the photo-Fenton process in a system composed of an annular reactor with a quartz immersion well and a medium-pressure mercury lamp (450 W). The study was conducted under special conditions to minimize the costs of acidification and neutralization, which are usual steps in this type of process. Photochemical reactions were carried out to investigate the influence of some process variables such as the initial concentration of Fe2+ ([Fe2+](0)) from 1.0 up to 2.5 mM, the rate in mmol of H2O2 fed into the system (F-H2O2,F-in) from 3.67 up to 7.33 mmol of H2O2/min during 120 min of reaction time, and the initial pH (pH(0)) from 3.0 up to 9.0 in the presence and absence of NaCl (60.0 g/L). Although the optimum pH for the photo-Fenton process is about 3.0, this particular system performed well in experimental conditions starting at alkaline and neutral pH. The results obtained here are promising for industrial applications, particularly in view of the high concentration of chloride, a known hydroxyl radical scavenger and the main oxidant present in photo-Fenton processes. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The presence of colour in raw sugar plays a key role in the marketing strategy of the Australian raw sugar industry. Some sugars are relatively difficult to decolourise during refining and develop colour during storage. A new approach that might result in efficient and cost-effective colour removal during the sugar manufacturing process is the use of an advanced oxidation process (AOP), known as Fenton oxidation, that is, catalytic production of hydroxyl radicals from the decomposition of hydrogen peroxide using ferrous iron. As a first step towards developing this technology, this study determined the composition of colour precursors present in the juice of cane harvested by three different methods. The methods were harvesting cane after burning, harvesting the whole crop with half of the trash extracted and harvesting the whole crop with no trash extracted. The study also investigated the degradation at pH 3, 4 and 5 of a phenolic compound, caffeic acid (3,4–dihydroxycinnamic acid), which is present in sugar cane juice, using both hydrogen peroxide and Fenton’s reagent. The results show that juice expressed from whole crop cane has significantly higher colour than juices expressed from burnt cane. However, the concentrations of phenolic acids were lower in the juices expressed from whole crop cane. The main phenolic acids present in these juices were p-coumaric, vanillic, 2,3–dihydroxybenzoic, gallic and 3,4–dihydroxybenzoic acids. The degradation of caffeic acid significantly improved using Fenton’s reagent in comparison to hydrogen peroxide alone. The Fenton oxidation was optimum at pH 5 when up to ~86 % of caffeic acid degraded within 5 min.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The degradation efficiencies and behaviors of caffeic acid (CaA), p-coumaric acid (pCoA) and ferulic acid (FeA) in aqueous sucrose solutions containing the mixture of these hydroxycinnamic acids (HCAs) mixtures were studied by the Fenton oxidation process. Central composite design and multi-response surface methodology were used to evaluate and optimize the interactive effects of process parameters. Four quadratic polynomial models were developed for the degradation of each individual acid in the mixture and the total HCAs degraded. Sucrose was the most influential parameter that significantly affected the total amount of HCA degraded. Under the conditions studied there was < 0.01% loss of sucrose in all reactions. The optimal values of the process parameters for a 200 mg/L HCA mixture in water (pH 4.73, 25.15 °C) and sucrose solution (13 mass%, pH 5.39, 35.98 °C) were 77% and 57% respectively. Regression analysis showed goodness of fit between the experimental results and the predicted values. The degradation behavior of CaA differed from those of pCoA and FeA, where further CaA degradation is observed at increasing sucrose and decreasing solution pH. The differences (established using UV/Vis and ATR-FTIR spectroscopy) were because, unlike the other acids, CaA formed a complex with Fe(III) or with Fe(III) hydrogen-bonded to sucrose, and coprecipitated with lepidocrocite, an iron oxyhydroxide.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Colour is one of the most important parameters in sugar quality and its presence in raw sugar plays a key role in the marketing strategy of sugar industries worldwide. This study investigated the degradation of a mixture of colour precursors using the Fenton oxidation process. These colour precursors are caffeic acid, p–coumaric acid and ferulic acid, which are present in cane juice. Results showed that with a Fe(II) to H2O2 molar ratio of 1:15 in an aqueous system at 25 °C, 77% of the total phenolic acid content was removed at pH 4.72. However, in a synthetic juice solution which contained 13 mass % sucrose (35 °C, pH 5.4), only 60% of the total phenolic acid content was removed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The presence of colour in raw sugar plays a key role in the marketing strategy of the Australian raw sugar industry. Some sugars are relatively difficult to decolourise during refining and develop colour during storage. A new approach that might result in efficient and cost-effective colour removal during the sugar manufacturing process is the use of an advanced oxidation process (AOP), known as Fenton oxidation, that is, catalytic production of hydroxyl radicals from the decomposition of hydrogen peroxide using ferrous iron. As a first step towards developing this technology, this study determined the composition of colour precursors present in the juice of cane harvested by three different methods. The methods were harvesting cane after burning, harvesting the whole crop with half of the trash extracted and harvesting the whole crop with no trash extracted. The study also investigated the degradation at pH 3, 4 and 5 of a phenolic compound, caffeic acid (3,4–dihydroxycinnamic acid), which is present in sugar cane juice, using both hydrogen peroxide and Fenton’s reagent. The results show that juice expressed from whole crop cane has significantly higher colour than juices expressed from burnt cane. However, the concentrations of phenolic acids were lower in the juices expressed from whole crop cane. The main phenolic acids present in these juices were p-coumaric, vanillic, 2,3–dihydroxybenzoic, gallic and 3,4–dihydroxybenzoic acids. The degradation of caffeic acid significantly improved using Fenton’s reagent in comparison to hydrogen peroxide alone. The Fenton oxidation was optimum at pH 5 when up to ~86% of caffeic acid degraded within 5 min.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lo scopo di questo lavoro di tesi è la caratterizzazione dei prodotti di ossidazione di diversi fenoli idrofili contenuti nell’olio vergine d’oliva come idrossitirosolo, tirosolo e la forma dialdeidica dell’acido decarbossimetil elenolico legato all’idrossitirosolo, e la loro identificazione nel prodotto durante la conservazione. L’obiettivo della ricerca è trovare degli indici analitici che possono essere usati sia come marker di “freschezza” dell’olio vergine di oliva sia nella valutazione della “shelf life” del prodotto stesso. Due sistemi di ossidazione sono stati usati per ossidare le molecole sopracitate: ossidazione enzimatica e ossidazione di Fenton. I prodotti di ossidazione sono stati identificati come chinoni, dimeri e acidi.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An Australian natural zeolite was collected, characterised and employed for basic dye adsorption in aqueous solution. The natural zeolite is mainly composed of clinoptiloite, quartz and mordenite and has cation-exchange capacity of 120 meq/100 g. The natural zeolite presents higher adsorption capacity for methylene blue than rhodamine B with the maximal adsorption capacity of 2.8 x 10(-5) and 7.9 x 10(-5) Mot/g at 50 degrees C for rhodamine B and methylene blue, respectively. Kinetic studies indicated that the adsorption followed the pseudo second-order kinetics and could be described as two-stage diffusion process. The adsorption isotherm could be fitted by the Langmuir and Freundlich models. Thermodynamic calculations showed that the adsorption is endothermic process with Delta H degrees at 2.0 and 8.7 kJ/mol for rhodamine B and methylene blue. It has also found that the regenerated zeolites by high-temperature calcination and Fenton oxidation showed similar adsorption capacity but lower than the fresh sample. Only 60% capacity could be recovered by the two regeneration techniques. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fenton-chemistry-based detemplation combined with secondary treatments offers options to tune the hierarchical porosity of SBA-15. This approach has been studied on a series of SBA-15 mesophases and has been compared to the conventional calcination. The as-synthesized and detemplated materials were studied with regard to their template content (TGA, CHN), structure (SAXS, TEM), surface hydroxylation (Blin-Carterets approach), and texture (high-resolution argon physisorption). Fenton detemplation achieves 99% of template removal, leading to highly hydroxylated materials. The structure is better preserved when a secondary treatment is applied after the Fenton oxidation, due to the intense capillary forces during drying in water. Two successful approaches are presented: drying in a low-surface-tension solvent (such as n-BuOH) and a hydrothermal stabilization to further condense the structure and make it structurally more robust. Both approaches give rise to remarkably low structural shrinkage, lower than calcination and the direct water-dried Fenton. Interestingly, the derived textural features are remarkably different. The n-BuOH exchange route gives rise to highly hierarchical structures with enhanced interconnecting pores and the highest surface areas. The hydrothermal stabilization produces large-pore SBA-15 structures with high pore volume, intermediate interconnectivity, and minimal micropores. Therefore, the hierarchical texture can be fine-tuned in these two fashions while the template is removed under mild conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The degradation of DDT [1,1-bis(4-chlorophenyl)-2,2,2-trichloroethane] and DDE [2,2-bis(4-chlorophenyl)-1,1-dichloroethylene] in highly and long-term contaminated soil using Fenton reaction in a slurry system is studied in this work. The influence of the amount of soluble iron added to the slurry versus the mineral iron originally present in the soil, and the influence of H2O2 concentration on the degradation process are evaluated. The main iron mineral species encountered in the soil, hematite (Fe2O3), did not show catalytic activity in the decomposition of H2O2, resulting in low degradation of DDT (24%) and DDE (4%) after 6 h. The addition of soluble iron (3.0 mmol L-1) improves the reaction reaching 53% degradation of DDT and 46% of DDE. The increase in iron concentration from 3.0 to 24 mmol L-1 improves slightly the degradation rate of the contaminants. However, similar degradation percentages were obtained after 24 h of reaction. It was observed that low concentrations of H2O2 were sufficient to degrade around 50% of the DDT and DDE present in the soil, while higher degradation percentages were achieved only with high amounts of this reagent (1.1 mol L-1). (c) 2006 Elsevier B.V. All rights reserved.