958 resultados para Factor-alpha Concentrations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activated protein C (APC) protects against sepsis in animal models and inhibits the lipopolysacharide (LPS)-induced elaboration of proinflammatory cytokines from monocytes. The molecular mechanism responsible for this property is unknown. We assessed the effect of APC on LPS-induced tumour necrosis factor alpha (TNF-alpha) production and on the activation of the central proinflammatory transcription factor nuclear factor-kappaB (NF-kappaB) in a THP-1 cell line. Cells were preincubated with varying concentrations of APC (200 microg/ml, 100 microg/ml and 20 microg/ml) before addition of LPS (100 ng/ml and 10 microg/ml). APC inhibited LPS-induced production of TNF-alpha both in the presence and absence of fetal calf serum (FCS), although the effect was less marked with 10% FCS. APC also inhibited LPS-induced activation of NF-kappaB, with APC (200 microg/ml) abolishing the effect of LPS (100 ng/ml). The ability of APC to inhibit LPS-induced translocation of NF-kappaB is likely to be a significant event given the critical role of the latter in the host inflammatory response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In diet-induced obesity, hypothalamic and systemic inflammatory factors trigger intracellular mechanisms that lead to resistance to the main adipostatic hormones, leptin and insulin. Tumor necrosis factor-alpha (TNF-alpha) is one of the main inflammatory factors produced during this process and its mechanistic role as an inducer of leptin and insulin resistance has been widely investigated. Most of TNF-alpha inflammatory signals are delivered by TNF receptor 1 (R1); however, the role played by this receptor in the context of obesity-associated inflammation is not completely known. Here, we show that TNFR1 knock-out (TNFR1 KO) mice are protected from diet-induced obesity due to increased thermogenesis. Under standard rodent chow or a high-fat diet, TNFR1 KO gain significantly less body mass despite increased caloric intake. Visceral adiposity and mean adipocyte diameter are reduced and blood concentrations of insulin and leptin are lower. Protection from hypothalamic leptin resistance is evidenced by increased leptin-induced suppression of food intake and preserved activation of leptin signal transduction through JAK2, STAT3, and FOXO1. Under the high-fat diet, TNFR1 KO mice present a significantly increased expression of the thermogenesis-related neurotransmitter, TRH. Further evidence of increased thermogenesis includes increased O(2) consumption in respirometry measurements, increased expressions of UCP1 and UCP3 in brown adipose tissue and skeletal muscle, respectively, and increased O(2) consumption by isolated skeletal muscle fiber mitochondria. This demonstrates that TNF-alpha signaling through TNFR1 is an important mechanism involved in obesity-associated defective thermogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Problem High plasma levels of tumor necrosis factor-alpha (TNF-alpha) in pregnant women have been associated with the pathogenesis of pre-eclampsia (PE). This study evaluated TNF-alpha plasma levels and monocyte production in gestational hypertension (GH) and PE during gestation and at puerperium.Method of study This study included 128 women, of whom 20 were non-pregnant (NP) normotensive (NT), and 108 were pregnant: 36 NT, 27 with GH, and 45 with PE. Peripheral blood plasma was used for TNF-alpha and uric acid determination. TNF-alpha was determined in plasma and lipopolysaccharide (LPS)-stimulated and non-stimulated monocyte supernatants by L929 bioassay.Results Tumor necrosis factor-alpha and uric acid plasma levels were higher in PE than in GH pregnancies. In both hypertensive groups, these parameters positively correlated and were significantly more elevated than in NT and NP women. TNF-alpha plasma levels and monocyte production were higher in hypertensive than in NT women during gestation, and significantly decreased at puerperium. Although decreased, TNF-alpha release in LPS-stimulated PE monocytes, was still significantly higher than in the other pregnant groups.Conclusion In vivo monocyte activation in GH and PE pregnant women was characterized by in vitro TNF-alpha production. The fact that higher circulating concentrations of TNF-alpha and uric acid were observed in PE than in GH suggests an association with disease severity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After filling root canals, the healing process depends on the chemical composition or physical-chemical properties of the material used, among other factors. All root canal sealers, whether solid or plastic, are foreign matter for the body if they remain in permanent contact with apical and periapical tissues. As a result, the first organic reaction that occurs is an attempt to phagocytize the material. During phagocytosis, macrophages release a large number of cell mediators into the area, among which are cytokines that are essential in intercellular communication and in many physiological and pathophysiological processes. One of these cytokines is tumor necrosis factor-alfa (TNF-α), which acts through links to specific receptors on the cell membrane initiating a cascade of events leading to induction, activation, or inhibition of numerous cytokine-regulated genes in the cell nucleus. The release of TNF-α in a cell culture of mouse peritoneal macrophages incubated with three concentrations (25, 50, and 100 mg/ml) of two endodontic sealers was measured. The solutions containing the calcium hydroxide-based root canal sealer (Sealapex) released fewer units of TNF-α than solutions containing the zinc oxide and eugenol-based sealer (Endomethasone).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TNFalpha is known to stimulate the development and activity of osteoclasts and of bone resorption. The cytokine was found to mediate bone loss in conjunction with inflammatory diseases such as rheumatoid arthritis or chronic aseptic inflammation induced by wear particles from implants and was suggested to be a prerequisite for the loss of bone mass under estrogen deficiency. In the present study, the regulation of osteoclastogenesis by TNFalpha was investigated in co-cultures of osteoblasts and bone marrow or spleen cells and in cultures of bone marrow and spleen cells grown with CSF-1 and RANKL. Low concentrations of TNFalpha (1 ng/ml) caused a >90% decrease in the number of osteoclasts in co-cultures, but did not affect the development of osteoclasts from bone marrow cells. In cultures with p55TNFR(-/-) osteoblasts and wt BMC, the inhibitory effect was abrogated and TNFalpha induced an increase in the number of osteoclasts in a dose-dependent manner. Osteoblasts were found to release the inhibitory factor(s) into the culture supernatant after simultaneous treatment with 1,25(OH)(2)D(3) and TNFalpha, this activity, but not its release, being resistant to treatment with anti-TNFalpha antibodies. Dexamethasone blocked the secretion of the TNFalpha-dependent inhibitor by osteoblasts, while stimulating the development of osteoclasts. The data suggest that the effects of TNFalpha on the differentiation of osteoclast lineage cells and on bone metabolism may be more complex than hitherto assumed and that these effects may play a role in vivo during therapies for inflammatory diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Matrix metalloproteinases (MMPs) and tumour necrosis factor alpha (TNF-alpha) converting enzyme (TACE) contribute synergistically to the pathophysiology of bacterial meningitis. TACE proteolytically releases several cell-surface proteins, including the proinflammatory cytokine TNF-alpha and its receptors. TNF-alpha in turn stimulates cells to produce active MMPs, which facilitate leucocyte extravasation and brain oedema by degradation of extracellular matrix components. In the present time-course studies of pneumococcal meningitis in infant rats, MMP-8 and -9 were 100- to 1000-fold transcriptionally upregulated, both in CSF cells and in brain tissue. Concentrations of TNF-alpha and MMP-9 in CSF peaked 12 h after infection and were closely correlated. Treatment with BB-1101 (15 mg/kg subcutaneously, twice daily), a hydroxamic acid-based inhibitor of MMP and TACE, downregulated the CSF concentration of TNF-alpha and decreased the incidences of seizures and mortality. Therapy with BB-1101, together with antibiotics, attenuated neuronal necrosis in the cortex and apoptosis in the hippocampus when given as a pretreatment at the time of infection and also when administration was started 18 h after infection. Functionally, the neuroprotective effect of BB-1101 preserved learning performance of rats assessed 3 weeks after the disease had been cured. Thus, combined inhibition of MMP and TACE offers a novel therapeutic strategy to prevent brain injury and neurological sequelae in bacterial meningitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To evaluate the role of tumor necrosis factor-alpha (TNF-alpha) in neuronal injury in experimental group B streptococcal meningitis, infected neonatal rats were treated with a monoclonal antibody against TNF-alpha (20 mg/kg intraperitoneally) or saline given at the time of infection. Histopathology after 24 h showed necrosis in the cortex and apoptosis in the hippocampal dentate gyrus. Treated animals had significantly less hippocampal injury than did controls (P < .001) but had similar cortical injury and cerebrospinal fluid (CSF) inflammation. The antibody was then administered directly intracisternally (170 microg) to test whether higher CSF concentrations reduced inflammation or cortical injury. Again, hippocampal apoptosis was significantly reduced (P < .01), while cortical injury and inflammation were not. Thus, TNF-alpha played a critical role in neuronal apoptosis in the hippocampus, while it was not essential for the development of inflammation and cortical injury in this model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In addition to its well known sedative and teratogenic effects, thalidomide also possesses potent immunomodulatory and antiinflammatory activities, being most effective against leprosy and chronic graft-versus-host disease. The immunomodulatory activity of thalidomide has been ascribed to the selective inhibition of tumor necrosis factor alpha from monocytes. The molecular mechanism for the immunomodulatory effect of thalidomide remains unknown. To elucidate this mechanism, we synthesized an active photoaffinity label of thalidomide as a probe to identify the molecular target of the drug. Using the probe, we specifically labeled a pair of proteins of 43-45 kDa with high acidity from bovine thymus extract. Purification of these proteins and partial peptide sequence determination revealed them to be alpha1-acid glycoprotein (AGP). We show that the binding of thalidomide photoaffinity label to authentic human AGP is competed with both thalidomide and the nonradioactive photoaffinity label at concentrations comparable to those required for inhibition of production of tumor necrosis factor alpha from human monocytes, suggesting that AGP may be involved in the immunomodulatory activity of thalidomide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of human granulocytes in the promotion of procainamide (PA) toxicity in vitro has been studied and one of the agents responsible for DNA strand scission and cell death in human target cells has been characterized. Crude peripheral blood mononuclear cells (cPBMNs) isolated by density centrifugation, and the lymphocyte cell lines--CCRF-HSB2 and WIL-2NS--were exposed to PA, and DNA strand breaks were quantified by fluorescent analysis of DNA unwinding. Therapeutic plasma concentrations of PA (0-50 microM) caused dose-dependent cytotoxicity, determined by dye exclusion, and strand breaks in cPBMNs incubated for 3 and 1.5 hr at 37 degrees, respectively. Using 50 microM PA a five-fold increase in DNA strand breaks was observed after 1.5 hr, with significant induction of strand breaks also being observed for 10 and 25 microM concentrations. Toxicity was much reduced in lymphocyte cell lines (maximal killing = 3.0% at 50 microM PA compared with 13.2% in cPBMNs). A similar decrease in toxicity was observed where N-acetyl procainamide (NAPA) was substituted for PA (less than 50% of strand breaks at all concentrations). Further investigations showed that the presence of a contaminating granulocyte population in the cPBMN fraction was responsible for the induction of PA toxicity. Incubation of a highly enriched granulocyte population with PA for 1 hr prior to exposure to purified peripheral blood mononuclear cells (pPBMNs) led to the complete restoration of the toxic effects. The resulting cyto- and genotoxicity were not significantly different to levels observed in cPBMNs. Significantly, incubation of granulocytes with NAPA did not induce toxicity in target pPBMNs. Ultrafiltration of granulocyte supernatants led to the identification of two toxic fractions of < 3000 and > 30,000 Da. Temporal studies showed that the toxicity associated with the < 3000 Da fraction appeared during the first 10-15 min incubation with PA whereas the > 30,000 Da fraction did not display significant toxicity until the 40-60 min period. Further assessment of the nature of these agents indicated that the 30,000 Da fraction was a protein. SDS-PAGE analysis showed an inducible 17,800 Da species appearing in granulocyte supernatants after 40 min incubation with PA. Dot blot analysis indicated that tumour necrosis factor alpha (TNF alpha) was present in the > 30,000 Da fraction. Evidence that TNF alpha was the high-molecular weight species responsible for PA-induced toxicity was obtained from neutralization assays employing an anti-TNF alpha antibody.(ABSTRACT TRUNCATED AT 400 WORDS)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumour necrosis factor (TNF) is a pleiotropic cytokine with dual roles in cancer biology including prostate cancer (PCa). On the one hand, there is evidence that it stimulates tumour angiogenesis, is involved in the initiation of PCa from an androgen-dependent to a castrate resistant state, plays a role in epithelial to mesenchymal plasiticity, and may contribute to the aberrant regulation of eicosanoid pathways. On the other hand, TNF has also been reported to inhibit neovascularisation, induce apoptosis of PCa cells, and stimulate anti-tumour immunity. Much of the confusion surrounding its seemingly paradoxical roles in cancer biology stems from the dependence of its effects on the biological model within which TNF is investigated. This review will address some of these issues, and also discuss on the therapeutic implications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Debilitating infectious diseases caused by Chlamydia are major contributors to the decline of Australia's iconic native marsupial species, the koala (Phascolarctos cinereus). An understanding of koala chlamydial disease pathogenesis and the development of effective strategies to control infections continue to be hindered by an almost complete lack of species-specific immunological reagents. The cell-mediated immune response has been shown to play an influential role in the response to chlamydial infection in other hosts. The objective of this study, hence, was to provide preliminary data on the role of two key cytokines, pro-inflammatory tumour necrosis factor alpha (TNFα) and anti-inflammatory interleukin 10 (IL10), in the koala Chlamydia pecorum response. Utilising sequence homology between the cytokine sequences obtained from several recently sequenced marsupial genomes, this report describes the first mRNA sequences of any koala cytokine and the development of koala specific TNFα and IL10 real-time PCR assays to measure the expression of these genes from koala samples. In preliminary studies comparing wild koalas with overt chlamydial disease, previous evidence of C. pecorum infection or no signs of C. pecorum infection, we revealed strong but variable expression of TNFα and IL10 in wild koalas with current signs of chlamydiosis. The description of these assays and the preliminary data on the cell-mediated immune response of koalas to chlamydial infection paves the way for future studies characterising the koala immune response to a range of its pathogens while providing reagents to assist with measuring the efficacy of ongoing attempts to develop a koala chlamydial vaccine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Increased incidence of lung cancer among pulmonary tuberculosis patients suggests mycobacteria-induced tumorigenic response in the host. The alveolar epithelial cells, candidate cells that form lung adenocarcinoma, constitute a niche for mycobacterial replication and infection. We thus explored the possible mechanism of M. bovis Bacillus Calmette-Guerin (BCG)-assisted tumorigenicity in type II epithelial cells, human lung adenocarcinoma A549 and other cancer cells. Methods: Cancer cell lines originating from lung, colon, bladder, liver, breast, skin and cervix were treated with tumor necrosis factor (TNF)-alpha in presence or absence of BCG infection. p53, COP1 and sonic hedgehog (SHH) signaling markers were determined by immunoblotting and luciferase assays, and quantitative real time PCR was done for p53-responsive pro-apoptotic genes and SHH signaling markers. MTT assays and Annexin V staining were utilized to study apoptosis. Gain-and loss-of-function approaches were used to investigate the role for SHH and COP1 signaling during apoptosis. A549 xenografted mice were used to validate the contribution of BCG during TNF-alpha treatment. Results: Here, we show that BCG inhibits TNF-alpha-mediated apoptosis in A549 cells via downregulation of p53 expression. Substantiating this observation, BCG rescued A549 xenografts from TNF-alpha-mediated tumor clearance in nude mice. Furthermore, activation of SHH signaling by BCG induced the expression of an E3 ubiquitin ligase, COP1. SHH-driven COP1 targeted p53, thereby facilitating downregulation of p53-responsive pro-apoptotic genes and inhibition of apoptosis. Similar effects of BCG could be shown for HCT116, T24, MNT-1, HepG2 and HELA cells but not for HCT116 p53(-/-) and MDA-MB-231 cells. Conclusion: Our results not only highlight possible explanations for the coexistence of pulmonary tuberculosis and lung cancer but also address probable reasons for failure of BCG immunotherapy of cancers.