992 resultados para Face Tracking


Relevância:

100.00% 100.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Non-rigid face alignment is a very important task in a large range of applications but the existing tracking based non-rigid face alignment methods are either inaccurate or requiring person-specific model. This dissertation has developed simultaneous alignment algorithms that overcome these constraints and provide alignment with high accuracy, efficiency, robustness to varying image condition, and requirement of only generic model.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background Children with callous-unemotional (CU) traits, a proposed precursor to adult psychopathy, are characterized by impaired emotion recognition, reduced responsiveness to others’ distress, and a lack of guilt or empathy. Reduced attention to faces, and more specifically to the eye region, has been proposed to underlie these difficulties, although this has never been tested longitudinally from infancy. Attention to faces occurs within the context of dyadic caregiver interactions, and early environment including parenting characteristics has been associated with CU traits. The present study tested whether infants’ preferential tracking of a face with direct gaze and levels of maternal sensitivity predict later CU traits. Methods Data were analyzed from a stratified random sample of 213 participants drawn from a population-based sample of 1233 first-time mothers. Infants’ preferential face tracking at 5 weeks and maternal sensitivity at 29 weeks were entered into a weighted linear regression as predictors of CU traits at 2.5 years. Results Controlling for a range of confounders (e.g., deprivation), lower preferential face tracking predicted higher CU traits (p = .001). Higher maternal sensitivity predicted lower CU traits in girls (p = .009), but not boys. No significant interaction between face tracking and maternal sensitivity was found. Conclusions This is the first study to show that attention to social features during infancy as well as early sensitive parenting predict the subsequent development of CU traits. Identifying such early atypicalities offers the potential for developing parent-mediated interventions in children at risk for developing CU traits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The utility of vision-based face tracking for dual pointing tasks is evaluated. We first describe a 3-D face tracking technique based on real-time parametric motion-stereo, which is non-invasive, robust, and self-initialized. The tracker provides a real-time estimate of a ?frontal face ray? whose intersection with the display surface plane is used as a second stream of input for scrolling or pointing, in paral-lel with hand input. We evaluated the performance of com-bined head/hand input on a box selection and coloring task: users selected boxes with one pointer and colors with a second pointer, or performed both tasks with a single pointer. We found that performance with head and one hand was intermediate between single hand performance and dual hand performance. Our results are consistent with previously reported dual hand conflict in symmetric pointing tasks, and suggest that a head-based input stream should be used for asymmetric control.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent advances in mobile phone cameras have poised them to take over compact hand-held cameras as the consumer’s preferred camera option. Along with advances in the number of pixels, motion blur removal, face-tracking, and noise reduction algorithms have significant roles in the internal processing of the devices. An undesired effect of severe noise reduction is the loss of texture (i.e. low-contrast fine details) of the original scene. Current established methods for resolution measurement fail to accurately portray the texture loss incurred in a camera system. The development of an accurate objective method to identify the texture preservation or texture reproduction capability of a camera device is important in this regard. The ‘Dead Leaves’ target has been used extensively as a method to measure the modulation transfer function (MTF) of cameras that employ highly non-linear noise-reduction methods. This stochastic model consists of a series of overlapping circles with radii r distributed as r−3, and having uniformly distributed gray level, which gives an accurate model of occlusion in a natural setting and hence mimics a natural scene. This target can be used to model the texture transfer through a camera system when a natural scene is captured. In the first part of our study we identify various factors that affect the MTF measured using the ‘Dead Leaves’ chart. These include variations in illumination, distance, exposure time and ISO sensitivity among others. We discuss the main differences of this method with the existing resolution measurement techniques and identify the advantages. In the second part of this study, we propose an improvement to the current texture MTF measurement algorithm. High frequency residual noise in the processed image contains the same frequency content as fine texture detail, and is sometimes reported as such, thereby leading to inaccurate results. A wavelet thresholding based denoising technique is utilized for modeling the noise present in the final captured image. This updated noise model is then used for calculating an accurate texture MTF. We present comparative results for both algorithms under various image capture conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Selling devices on retail stores comes with the big challenge of grabbing the customer’s attention. Nowadays people have a lot of offers at their disposal and new marketing techniques must emerge to differentiate the products. When it comes to smartphones and tablets, those devices can make the difference by themselves, if we use their computing power and capabilities to create something unique and interactive. With that in mind, three prototypes were developed during an internship: a face recognition based Customer Detection, a face tracking solution with an Avatar and interactive cross-app Guides. All three revealed to have potential to be differentiating solutions in a retail store, not only raising the chance of a customer taking notice of the device but also of interacting with them to learn more about their features. The results were meant to be only proof of concepts and therefore were not tested in the real world.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Identifying an individual from surveillance video is a difficult, time consuming and labour intensive process. The proposed system aims to streamline this process by filtering out unwanted scenes and enhancing an individual's face through super-resolution. An automatic face recognition system is then used to identify the subject or present the human operator with likely matches from a database. A person tracker is used to speed up the subject detection and super-resolution process by tracking moving subjects and cropping a region of interest around the subject's face to reduce the number and size of the image frames to be super-resolved respectively. In this paper, experiments have been conducted to demonstrate how the optical flow super-resolution method used improves surveillance imagery for visual inspection as well as automatic face recognition on an Eigenface and Elastic Bunch Graph Matching system. The optical flow based method has also been benchmarked against the ``hallucination'' algorithm, interpolation methods and the original low-resolution images. Results show that both super-resolution algorithms improved recognition rates significantly. Although the hallucination method resulted in slightly higher recognition rates, the optical flow method produced less artifacts and more visually correct images suitable for human consumption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Governments face a significant challenge to ensure that community environments meet the mobility needs of an ageing population. Therefore, it is critical to investigate the effect of suburban environments on the choice of transportation and its relation to participation and active ageing. Objective. This research explores if and how suburban environments impact older people’s mobility and their use of different modes of transport. Methods. Data derived from GPS tracking, travel diaries, brief questionnaires, and semistructured interviews were gathered from thirteen people aged from 56 to 87 years, living in low-density suburban environments in Brisbane, Australia. Results. The suburban environment influenced the choice of transportation and out-of-home mobility. Both walkability and public transportation (access and usability) impact older people’s transportation choices. Impracticality of active and public transportation within suburban environments creates car dependency in older age. Conclusion. Suburban environments often create barriers to mobility, which impedes older people’s engagement in their wider community and ability to actively age in place. Further research is needed to develop approaches towards age-friendly suburban environments which will encourage older people to remain active and engaged in older age.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years a variety of mobile apps, wearable technologies and embedded systems have emerged that allow individuals to track the amount and the quality of their sleep in their own beds. Despite the widespread adoption of these technologies, little is known about the challenges that current users face in tracking and analysing their sleep. Hence we conducted a qualitative study to examine the practices of current users of sleep tracking technologies and to identify challenges in current practice. Based on data collected from 5 online forums for users of sleep-tracking technologies, we identified 22 different challenges under the following 4 themes: tracking continuity, trust, data manipulation, and data interpretation. Based on these results, we propose 6 design opportunities to assist researchers and practitioners in designing sleep-tracking technologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed a novel human facial tracking system that operates in real time at a video frame rate without needing any special hardware. The approach is based on the use of Lie algebra, and uses three-dimensional feature points on the targeted human face. It is assumed that the roughly estimated facial model (relative coordinates of the three-dimensional feature points) is known. First, the initial feature positions of the face are determined using a model fitting technique. Then, the tracking is operated by the following sequence: (1) capture the new video frame and render feature points to the image plane; (2) search for new positions of the feature points on the image plane; (3) get the Euclidean matrix from the moving vector and the three-dimensional information for the points; and (4) rotate and translate the feature points by using the Euclidean matrix, and render the new points on the image plane. The key algorithm of this tracker is to estimate the Euclidean matrix by using a least square technique based on Lie algebra. The resulting tracker performed very well on the task of tracking a human face.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a gradient-based motion capture system that robustly tracks a human hand, based on abstracted visual information - silhouettes. Despite the ambiguity in the visual data and despite the vulnerability of gradient-based methods in the face of such ambiguity, we minimise problems related to misfit by using a model of the hand's physiology, which is entirely non-visual, subject-invariant, and assumed to be known a priori. By modelling seven distinct aspects of the hand's physiology we derive prior densities which are incorporated into the tracking system within a Bayesian framework. We demonstrate how the posterior is formed, and how our formulation leads to the extraction of the maximum a posteriori estimate using a gradient-based search. Our results demonstrate an enormous improvement in tracking precision and reliability, while also achieving near real-time performance. © 2009 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Statistical approaches for building non-rigid deformable models, such as the Active Appearance Model (AAM), have enjoyed great popularity in recent years, but typically require tedious manual annotation of training images. In this paper, a learning based approach for the automatic annotation of visually deformable objects from a single annotated frontal image is presented and demonstrated on the example of automatically annotating face images that can be used for building AAMs for fitting and tracking. This approach employs the idea of initially learning the correspondences between landmarks in a frontal image and a set of training images with a face in arbitrary poses. Using this learner, virtual images of unseen faces at any arbitrary pose for which the learner was trained can be reconstructed by predicting the new landmark locations and warping the texture from the frontal image. View-based AAMs are then built from the virtual images and used for automatically annotating unseen images, including images of different facial expressions, at any random pose within the maximum range spanned by the virtually reconstructed images. The approach is experimentally validated by automatically annotating face images from three different databases. © 2009 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In gesture and sign language video sequences, hand motion tends to be rapid, and hands frequently appear in front of each other or in front of the face. Thus, hand location is often ambiguous, and naive color-based hand tracking is insufficient. To improve tracking accuracy, some methods employ a prediction-update framework, but such methods require careful initialization of model parameters, and tend to drift and lose track in extended sequences. In this paper, a temporal filtering framework for hand tracking is proposed that can initialize and reset itself without human intervention. In each frame, simple features like color and motion residue are exploited to identify multiple candidate hand locations. The temporal filter then uses the Viterbi algorithm to select among the candidates from frame to frame. The resulting tracking system can automatically identify video trajectories of unambiguous hand motion, and detect frames where tracking becomes ambiguous because of occlusions or overlaps. Experiments on video sequences of several hundred frames in duration demonstrate the system's ability to track hands robustly, to detect and handle tracking ambiguities, and to extract the trajectories of unambiguous hand motion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel method for 3D head tracking in the presence of large head rotations and facial expression changes is described. Tracking is formulated in terms of color image registration in the texture map of a 3D surface model. Model appearance is recursively updated via image mosaicking in the texture map as the head orientation varies. The resulting dynamic texture map provides a stabilized view of the face that can be used as input to many existing 2D techniques for face recognition, facial expressions analysis, lip reading, and eye tracking. Parameters are estimated via a robust minimization procedure; this provides robustness to occlusions, wrinkles, shadows, and specular highlights. The system was tested on a variety of sequences taken with low quality, uncalibrated video cameras. Experimental results are reported.