115 resultados para FURAN
Resumo:
In the title compound, [Ni(C(20)H(17)N(2)O(2)S)(2)], the NiII atom is coordinated by the S and O atoms of two 1,1-dibenzyl-3-[(furan-2-yl)carbonyl]thioureate ligands in a distorted square-planar geometry. The two O and two S atoms are mutually cis to each other. The Ni-S and Ni-O bond lengths lie within the range of those found in related structures. The dihedral angle between the planes of the two chelating rings is 20.33 (6)degrees.
Resumo:
In the title compound, [Cu(C(20)H(17)N(2)O(2)S)(2)], the Cu(II) atom is coordinated by the S and O atoms of two 1,1-dibenzyl-3-(furan-2-ylcarbonyl)thioureate ligands in a distorted square-planar geometry. The two O and two S atoms are mutually cis to each other. The Cu-S and Cu-O bond lengths lie within the ranges of those found in related structures. The dihedral angle between the planes of the two chelating rings is 26.15 (6)degrees.
Resumo:
Dioxins and furans, PCDD/Fs, are highly toxic substances formed in post combustion zones in furnaces. PCDD/F emissions are regulated by a waste incineration directive which relates also to co-incineration plants. Several observations of dioxin and furan enhancements in wet scrub- bers have been reported previously. This is thought to be due to the so-called "memory effect" which occurs when dioxins and furans absorb into plastic material in scrubbers and desorb when ambient circumstances alter significantly. At the co-incineration plant involved, dioxins and furans are controlled with a wet scrubber, the tower packing of which is made of plastic in which activated carbon particles are dispersed. This should avoid the memory effect and act as a dioxin and furan sink since dioxins and furans are absorbed irreversibly into the packing ma- terial. In this case, the tower packing in the scrubber is covered with a white layer that has been found to be mainly aluminium. The aim of this thesis was to determine the aluminium balance and the dioxin and furan behaviour in the scrubber and, thus, the impacts that the foul- ing has on dioxin and furan removal. The source of aluminium, reasons for fouling and further actions to minimize its impacts on dioxin and furan removal were also to be discovered. Measurements in various media around the scrubber and in fuels were made and a profile analysis of PCDD/F and mass balance calculations were carried out. PCDD/F content de- creased in the scrubber. The reduced PCDD/F was not discharged into scrubbing water. The removal mechanism seems to work in spite of the fouling, at least with low PCDD/F loads. Most of the PCDD/F in excess water originates from the Kymijoki River which is used as feeding water in the scrubber. Fouling turned out to consist mainly of aluminium hydroxides. Sludge combusted in the furnace was found to be a significant source of aluminium. Ways to minimize the fouling would be adjustment of pH to a proper lever, installation of a mechanical filter to catch the loose material from the scrubbing water and affecting the aluminium content of the sludge.
Resumo:
A furan-triazole derivative has been explored as an ionophore for preparation of a highly selective Pr(III) membrane sensor. The proposed sensor exhibits a Nernstian response for Pr(III) activity over a wide concentration range with a detection limit of 5.2×10-8 M. Its response is independent of pH of the solution in the range 3.0-8.8 and offers the advantages of fast response time. To investigate the analytical applicability of the sensor, it was applied successfully as an indicator electrode in potentiometric titration of Pr(III) solution and also in the direct and indirect determination of trace Pr(III) ions in some samples.
Resumo:
Specific combustion programs (Gaseq, Chemical equilibria in perfect gases, Chris Morley) are used to model dioxin and formation in the incineration processes of urban solid wastes. Thanks to these programs, it is possible to establish correlations with the formation mechanisms postulated in literature on the subject. It was found that minimum oxygen quantities are required to obtain a significant formation of these compounds and that more furans than dioxins are formed. Likewise, dioxin and furan formation is related to the presence of carbon monoxide, and dioxin and furan distribution among its different compounds depends on the chlorine and hydrogen relative composition. This is due to the fact that an increased chlorine availability leads to the formation of compounds bearing a higher chlorine concentration (penta-, hexa-, hepta-, and octachlorides), whereas an increased hydrogen availability leads to the formation of compounds bearing a lower chlorine number (mono, di-, tri-, and tetrachlorides).
Resumo:
The structural and electronic properties of 1-(5-Hydroxymethyl - 4 -[ 5 - (5-oxo-5-piperidin- 1 -yl-penta- 1,3 -dienyl)-benzo [1,3] dioxol- 2 -yl]-tetrahydro -furan-2 -yl)-5-methy l-1Hpyrimidine-2,4dione (AHE) molecule have been investigated theoretically by performing density functional theory (DFT), and semi empirical molecular orbital calculations. The geometry of the molecule is optimized at the level of Austin Model 1 (AM1), and the electronic properties and relative energies of the molecules have been calculated by density functional theory in the ground state. The resultant dipole moment of the AHE molecule is about 2.6 and 2.3 Debyes by AM1 and DFT methods respectively, This property of AHE makes it an active molecule with its environment, that is AHE molecule may interacts with its environment strongly in solution.
Resumo:
The title compound, C11H9N3O2, exists in the E conformation with respect to the azomethane C N bond, and has the keto form. There are two independent molecules in the asymmetric unit and each of these features a slight slanting of the pyridine and furan rings, which form a dihedral angle of 14.96 (10) in one of the molecules and 5.53 (10) in the other. The crystal structure is stabilized by N—H O and N—H N hydrogen bonds, weak C—H O and C—H N hydrogen bonds and C—H interactions and – interactions [shortest centroid–centroid distance = 3.7864 (15) A ° ].
Resumo:
Infrared intensities of the fundamental, overtone and combination transitions in furan, pyrrole and thiophene have been calculated using the variational normal coordinate code MULTIMODE. We use pure vibrational wavefunctions, and quartic force fields and cubic dipole moment vector surfaces, generated by density functional theory. The results are compared graphically with second-order perturbation calculations and with relative intensities from experiment for furan and pyrrole.
Resumo:
We describe herein preliminary studies on the Intramolecular Diels-Alder Furan-Mediated Synthesis of 8-Aryl-3, 4-di-hydroisoquinolin-1(2H)-ones that constitutes a new, formal synthesis of Indeno[1,2,3-ij]isoquinolines.
Resumo:
In this work we employ the state of the art pseudopotential method, within a generalized gradient approximation to the density functional theory, to investigate the adsorption process of furan on the silicon (001) surface. A direct comparison of different adsorption structures with x-ray photoelectron spectroscopy (XPS), ultra-violet photoelectron spectroscopy (UPS), high resolution electron energy loss spectroscopy (HREELS), near edge x-ray absorption fine structure (NEXAFS), and high resolution spectroscopy experimental data allows us to identify the [4 + 2] cycloaddition reaction as the most probable adsorbate. In addition, theoretical scanning tunnelling microscopy (STM) images are presented, with a view to contributing to further experimental investigations.
Resumo:
Monomers based on plant oil derivatives bearing furan heterocycles appended through thiol-ene click chemistry were prepared and, subsequently, polymerized via a second type of click reaction, i. e. the Diels-Alder (DA) polycondensation between furan and maleimide complementary moieties. Two basic approaches were considered for these DA polymerizations, namely (i) the use of monomers with two terminal furan rings in conjunction with bismaleimides (AA + BB systems) and (ii) the use of a protected AB monomer incorporating both furan and maleimide end groups. This study clearly showed that both strategies were successful, albeit with different outcomes, in terms of the nature of the ensuing products. The application of the retro-DA reaction to these polymers confirmed their thermoreversible character, i. e. the clean-cut return to their respective starting monomers, opening the way to original macromolecular materials with interesting applications, like mendability and recyclability.
Resumo:
In the crystal structure of the title compound, C20H18N2O2S, molecules are linked by bifurcated C-H center dot center dot center dot O hydrogen-bond interactions, giving rise to chains whose links are composed of alternating centrosymmetrically disposed pairs of molecules and characterized by R-2(2)(10) and R-2(2)(20) hydrogen-bonding motifs. Also, N-H center dot center dot center dot S hydrogen bonds form infinite zigzag chains along the [010] direction, which exhibit the C(4) motif. Hirshfeld surface and fingerprint plots were used to explore the intermolecular interactions in the crystal structure. This analysis confirms the important role of C-H center dot center dot center dot O hydrogen bonds in the molecular conformation and in the crystal structure, providing a potentially useful tool for a full understanding of the intermolecular interactions in acylthiourea derivatives.
Resumo:
The starting material for this project was the highly functionalized compound 3,3,4,4- tetraethoxybut-1-yne (TEB) and it can be prepared from ethyl vinyl ether by a 4-steps synthesis. The third and the fourth step in TEB synthesis were sensitive to reaction conditions, so it was developed a strategy to try to optimize the third step and obtain TEB with higher yields. An approach, which tries to optimize also the fourth step, will be developed in further works. Several γ-hydroxy-α,β-unsaturated acetylenic ketones can be prepared from 3,3,4,4- tetraethoxybut-1-yne. TEB and γ-hydroxy-α,β-unsaturated acetylenic ketones have been previously synthesized in good yields using various reaction routes. In this work will be shown the synthesis of 1,1-diethoxy-5-hydroxyhex-3-yn-2-one, 1,1-diethoxy-5-hydroxyundec-3-yn-2-one and 1,1-diethoxy-5-hydroxydodec-3-yn-2-one, which will react with ethyl acetoacetate to give, respectively, ethyl 4-(3,3-diethoxy-2-oxopropyl)-2,5-dimethylfuran-3-carboxylate, ethyl 4-(3,3-diethoxy-2-oxopropyl)-5-hexyl-2-methylfuran-3-carboxylate and ethyl 4-(3,3-diethoxy-2-oxopropyl)- 5-heptyl-2-methylfuran-3-carboxylate furan derivatives. This thesis project was carried out during the year 2011, at the Department of Chemistry of the University of Bergen.
Resumo:
In recent years, several surveys have highlighted the presence of the rodent carcinogen furan in a variety of food items. Even though the evidence of carcinogenicity of furan is unequivocal, the underlying mechanism has not been fully elucidated. In particular, the role of genotoxicity in furan carcinogenicity is still not clear, even though this information is considered pivotal for the assessment of the risk posed by the presence of low doses of furan in food. In this work, the genotoxic potential of furan in vivo has been investigated in mice, under exposure conditions similar to those associated with cancer onset in the National Toxicology Program long-term bioassay. To this aim, male B6C3F1 mice were treated by gavage for 4 weeks with 2, 4, 8 and 15 mg furan/kg b.w./day. Spleen was selected as the target organ for genotoxicity assessment, in view of the capability of quiescent splenocytes to accumulate DNA damage induced by repeat dose exposure. The induction of primary DNA damage in splenocytes was evaluated by alkaline single-cell gel electrophoresis (comet assay) and by the immunofluorescence detection of foci of phosphorylated histone H2AX (gamma-H2AX). The presence of cross-links was probed in a modified comet assay, in which cells were irradiated in vitro with gamma-rays before electrophoresis. Chromosome damage was quantitated through the detection of micronuclei in mitogen-stimulated splenocytes using the cytokinesis-block method. Micronucleus induction was also assessed with a modified protocol, using the repair inhibitor 1-beta-arabinofuranosyl-cytosine to convert single-strand breaks in micronuclei. The results obtained show a significant (P < 0.01) increase of gamma-H2AX foci in mitogen-stimulated splenocytes of mice treated with 8 and 15 mg furan/kg b.w. and a statistically significant (P < 0.001) increases of micronuclei in binucleated splenocytes cultured in vitro. Conversely, no effect of in vivo exposure to furan was observed when freshly isolated quiescent splenocytes were analysed by immunofluorescence and in comet assays, both with standard and radiation-modified protocols. These results indicate that the in vivo exposure to furan gives rise to pre-mutagenic DNA damage in resting splenocytes, which remains undetectable until it is converted in frank lesions during the S-phase upon mitogen stimulation. The resulting DNA strand breaks are visualized by the increase in gamma-H2AX foci and may originate micronuclei at the subsequent mitosis.