888 resultados para FUNCTIONAL DATA ANALYSIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a novel approach in order to increase the recognition power of Multiscale Fractal Dimension (MFD) techniques, when applied to image classification. The proposal uses Functional Data Analysis (FDA) with the aim of enhancing the MFD technique precision achieving a more representative descriptors vector, capable of recognizing and characterizing more precisely objects in an image. FDA is applied to signatures extracted by using the Bouligand-Minkowsky MFD technique in the generation of a descriptors vector from them. For the evaluation of the obtained improvement, an experiment using two datasets of objects was carried out. A dataset was used of characters shapes (26 characters of the Latin alphabet) carrying different levels of controlled noise and a dataset of fish images contours. A comparison with the use of the well-known methods of Fourier and wavelets descriptors was performed with the aim of verifying the performance of FDA method. The descriptor vectors were submitted to Linear Discriminant Analysis (LDA) classification method and we compared the correctness rate in the classification process among the descriptors methods. The results demonstrate that FDA overcomes the literature methods (Fourier and wavelets) in the processing of information extracted from the MFD signature. In this way, the proposed method can be considered as an interesting choice for pattern recognition and image classification using fractal analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Next-generation DNA sequencing platforms can effectively detect the entire spectrum of genomic variation and is emerging to be a major tool for systematic exploration of the universe of variants and interactions in the entire genome. However, the data produced by next-generation sequencing technologies will suffer from three basic problems: sequence errors, assembly errors, and missing data. Current statistical methods for genetic analysis are well suited for detecting the association of common variants, but are less suitable to rare variants. This raises great challenge for sequence-based genetic studies of complex diseases.^ This research dissertation utilized genome continuum model as a general principle, and stochastic calculus and functional data analysis as tools for developing novel and powerful statistical methods for next generation of association studies of both qualitative and quantitative traits in the context of sequencing data, which finally lead to shifting the paradigm of association analysis from the current locus-by-locus analysis to collectively analyzing genome regions.^ In this project, the functional principal component (FPC) methods coupled with high-dimensional data reduction techniques will be used to develop novel and powerful methods for testing the associations of the entire spectrum of genetic variation within a segment of genome or a gene regardless of whether the variants are common or rare.^ The classical quantitative genetics suffer from high type I error rates and low power for rare variants. To overcome these limitations for resequencing data, this project used functional linear models with scalar response to develop statistics for identifying quantitative trait loci (QTLs) for both common and rare variants. To illustrate their applications, the functional linear models were applied to five quantitative traits in Framingham heart studies. ^ This project proposed a novel concept of gene-gene co-association in which a gene or a genomic region is taken as a unit of association analysis and used stochastic calculus to develop a unified framework for testing the association of multiple genes or genomic regions for both common and rare alleles. The proposed methods were applied to gene-gene co-association analysis of psoriasis in two independent GWAS datasets which led to discovery of networks significantly associated with psoriasis.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The predominant fear in capital markets is that of a price spike. Commodity markets differ in that there is a fear of both upward and down jumps, this results in implied volatility curves displaying distinct shapes when compared to equity markets. The use of a novel functional data analysis (FDA) approach, provides a framework to produce and interpret functional objects that characterise the underlying dynamics of oil future options. We use the FDA framework to examine implied volatility, jump risk, and pricing dynamics within crude oil markets. Examining a WTI crude oil sample for the 2007–2013 period, which includes the global financial crisis and the Arab Spring, strong evidence is found of converse jump dynamics during periods of demand and supply side weakness. This is used as a basis for an FDA-derived Merton (1976) jump diffusion optimised delta hedging strategy, which exhibits superior portfolio management results over traditional methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The autoregressive (AR) estimator, a non-parametric method, is used to analyze functional magnetic resonance imaging (fMRI) data. The same method has been used, with success, in several other time series data analysis. It uses exclusively the available experimental data points to estimate the most plausible power spectra compatible with the experimental data and there is no need to make any assumption about non-measured points. The time series, obtained from fMRI block paradigm data, is analyzed by the AR method to determine the brain active regions involved in the processing of a given stimulus. This method is considerably more reliable than the fast Fourier transform or the parametric methods. The time series corresponding to each image pixel is analyzed using the AR estimator and the corresponding poles are obtained. The pole distribution gives the shape of power spectra, and the pixels with poles at the stimulation frequency are considered as the active regions. The method was applied in simulated and real data, its superiority is shown by the receiver operating characteristic curves which were obtained using the simulated data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, initial crystallographic studies of human haemoglobin (Hb) crystallized in isoionic and oxygen-free PEG solution are presented. Under these conditions, functional measurements of the O-2-linked binding of water molecules and release of protons have evidenced that Hb assumes an unforeseen new allosteric conformation. The determination of the high-resolution structure of the crystal of human deoxy-Hb fully stripped of anions may provide a structural explanation for the role of anions in the allosteric properties of Hb and, particularly, for the influence of chloride on the Bohr effect, the mechanism by which Hb oxygen affinity is regulated by pH. X-ray diffraction data were collected to 1.87 Angstrom resolution using a synchrotron-radiation source. Crystals belong to the space group P2(1)2(1)2 and preliminary analysis revealed the presence of one tetramer in the asymmetric unit. The structure is currently being refined using maximum-likelihood protocols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hemoglobin remains, despite the enormous amount of research involving this molecule, as a prototype for allosteric models and new conformations. Functional studies carried out on Hemoglobin-I from the South-American Catfish Liposarcus anisitsi [1] suggest the existence of conformational states beyond those already described for human hemoglobin, which could be confirmed crystallographically. The present work represents the initial steps towards that goal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Approximately 795,000 new and recurrent strokes occur each year. Because of the resulting functional impairment, stroke survivors are often discharged into the care of a family caregiver, most often their spouse. This dissertation explored the effect that mutuality, a measure of the perceived positive aspects of the caregiving relationship, had on the stress and depression of 159 stroke survivors and their spousal caregivers over the first 12 months post discharge from inpatient rehabilitation. Specifically, cross-lagged regression was utilized to investigate the dyadic, longitudinal relationship between caregiver and stroke survivor mutuality and caregiver and stroke survivor stress over time. Longitudinal meditational analysis was employed to examine the mediating effect of mutuality on the dyads’ perception of family function and caregiver and stroke survivor depression over time.^ Caregivers’ mutuality was found to be associated with their own stress over time but not the stress of the stroke survivor. Caregivers who had higher mutuality scores over the 12 months of the study had lower perceived stress. Additionally, a partner effect of stress for the stroke survivor but not the caregiver was found, indicating that stroke survivors’ stress over time was associated with caregivers’ stress but caregivers’ stress over time was not significantly associated with the stress of the stroke survivor.^ This dissertation did not find mutuality to mediate the relationship between caregivers’ and stroke survivors’ perception of family function at baseline and their own or their partners’ depression at 12 months as hypothesized. However, caregivers who perceived healthier family functioning at baseline and stroke survivors who had higher perceived mutuality at 12 months had lower depression at one year post discharge from inpatient rehabilitation. Additionally, caregiver mutuality at 6 months, but not at baseline or 12 months, was found to be inversely related to caregiver depression at 12 months.^ These findings highlight the interpersonal nature of stress in the context of caregiving, especially among spousal relationships. Thus, health professionals should encourage caregivers and stroke survivors to focus on the positive aspects of the caregiving relationship in order to mitigate stress and depression. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A substantial amount of information on the Internet is present in the form of text. The value of this semi-structured and unstructured data has been widely acknowledged, with consequent scientific and commercial exploitation. The ever-increasing data production, however, pushes data analytic platforms to their limit. This thesis proposes techniques for more efficient textual big data analysis suitable for the Hadoop analytic platform. This research explores the direct processing of compressed textual data. The focus is on developing novel compression methods with a number of desirable properties to support text-based big data analysis in distributed environments. The novel contributions of this work include the following. Firstly, a Content-aware Partial Compression (CaPC) scheme is developed. CaPC makes a distinction between informational and functional content in which only the informational content is compressed. Thus, the compressed data is made transparent to existing software libraries which often rely on functional content to work. Secondly, a context-free bit-oriented compression scheme (Approximated Huffman Compression) based on the Huffman algorithm is developed. This uses a hybrid data structure that allows pattern searching in compressed data in linear time. Thirdly, several modern compression schemes have been extended so that the compressed data can be safely split with respect to logical data records in distributed file systems. Furthermore, an innovative two layer compression architecture is used, in which each compression layer is appropriate for the corresponding stage of data processing. Peripheral libraries are developed that seamlessly link the proposed compression schemes to existing analytic platforms and computational frameworks, and also make the use of the compressed data transparent to developers. The compression schemes have been evaluated for a number of standard MapReduce analysis tasks using a collection of real-world datasets. In comparison with existing solutions, they have shown substantial improvement in performance and significant reduction in system resource requirements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project, as part of a broader Sustainable Sub-divisions research agenda, addresses the role of natural ventilation in reducing the use of energy required to cool dwellings

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report provides an introduction to our analyses of secondary data with respect to violent acts and incidents relating to males living in rural settings in Australia. It clarifies important aspects of our overall approach primarily by concentrating on three elements that required early scoping and resolution. Firstly, a wide and inclusive view of violence which encompasses measures of violent acts and incidents and also data identifying risk taking behaviour and the consequences of violence is outlined and justified. Secondly, the classification used to make comparisons between the city and the bush together with associated caveats is outlined. The third element discussed is in relation to national injury data. Additional commentary resulting from exploration, examination and analyses of secondary data is published online in five subsequent reports in this series.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explores a method of comparative analysis and classification of data through perceived design affordances. Included is discussion about the musical potential of data forms that are derived through eco-structural analysis of musical features inherent in audio recordings of natural sounds. A system of classification of these forms is proposed based on their structural contours. The classifications include four primitive types; steady, iterative, unstable and impulse. The classification extends previous taxonomies used to describe the gestural morphology of sound. The methods presented are used to provide compositional support for eco-structuralism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Road agencies require comprehensive, relevan and quality data describing their road assets to support their investment decisions. An investment decision support system for raod maintenance and rehabilitation mainly comprise three important supporting elements namely: road asset data, decision support tools and criteria for decision-making. Probability-based methods have played a crucial role in helping decision makers understand the relationship among road related data, asset performance and uncertainties in estimating budgets/costs for road management investment. This paper presents applications of the probability-bsed method for road asset management.