984 resultados para FISH DAILY RATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diet composition of fish caught in San Miguel Bay, Philippines, in April and May 1993 was studied. The diets of tiger-tooth croaker (Otolithes ruber), commerson's anchovy (Stolephorus commersonii); and the Indian anchovy (Stolephorus indicus) consisted mainly of zooplankton, primarily crustaceans. The stomach content of orangefin ponyfish (Leiognathus bindus) was found to consist mostly of detritus and unidentified materials. Daily rations estimated were: 1.90 g day super(1) for O. ruber of 17.3 g mean body weight (BW), 0.078 g day super(1) for S. commersonii) of 3.8 g mean BW, 0.062 g day super(1) for S. indicus of 3.9 g mean BW and 0.56 g day super(1) for L. bindus of 7.7 g mean BW.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diet, gastric evacuation rates, daily ration, and population-level prey demand of bluefin tuna (Thunnus thynnus) were estimated in the continental shelf waters off North Carolina. Bluefin tuna stomachs were collected from commercial fishermen during the late fall and winter months of 2003–04, 2004–05, and 2005–06. Diel patterns in mean gut fullness values were used to estimate gastric evacuation rates. Daily ration determined from mean gut fullness values and gastric evacuation rates was used, along with bluefin tuna population size and residency times, to estimate population-level consumption by bluefin tuna on Atlantic menhaden (Brevoortia tyrannus). Bluefin tuna diet (n= 448) was dominated by Atlantic menhaden; other teleosts, portunid crabs, and squid were of mostly minor importance. The time required to empty the stomach after peak gut fullness was estimated to be ~20 hours. Daily ration estimates were approximately 2% of body weight per day. At current western Atlantic population levels, bluefin tuna predation on Atlantic menhaden is minimal compared to predation by other known predators and the numbers taken in commercial harvest. Bluefin tuna appear to occupy coastal waters in North Carolina during winter to prey upon Atlantic menhaden. Thus, changes in the Atlantic menhaden stock status or distribution would alter the winter foraging locations of bluefin

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diet and daily ration of the shortfin mako (Isurus oxyrinchus) in the northwest Atlantic were re-examined to determine whether fluctuations in prey abundance and availability are reflected in these two biological variables. During the summers of 2001 and 2002, stomach content data were collected from fishing tournaments along the northeast coast of the United States. These data were quantified by using four diet indices and were compared to index calculations from historical diet data collected from 1972 through 1983. Bluefish (Pomatomus saltatrix) were the predominant prey in the 1972–83 and 2001–02 diets, accounting for 92.6% of the current diet by weight and 86.9% of the historical diet by volume. From the 2001– 02 diet data, daily ration was estimated and it indicated that shortfin makos must consume roughly 4.6% of their body weight per day to fulfill energetic demands. The daily energetic requirement was broken down by using a calculated energy content for the current diet of 4909 KJ/kg. Based on the proportional energy of bluefish in the diet by weight, an average shortfin mako consumes roughly 500 kg of bluefish per year off the northeast coast of the United States. The results are discussed in relation to the potential effect of intense shortfin mako predation on bluefish abundance in the region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] Diel Vertical Migrants (DVMs) are mainly zooplankton and micronekton which migrate upward from 400-500 m depth every night to feed on the productive epipelagic zone, coming back at dawn to the mesopelagic zone, where they defecate, excrete, and respire the ingested carbon. DVMs should contribute to the biological pump in the ocean and, accordingly, to the global CO2 balance. Although those migrants are mainly small fishes, cephalopods and crustaceans, the lanternfishes (myctophidae) usually contribute up to 80% of total DVMs biomass. Thus, myctophids may represent a pathway accounting for a substantial export of organic carbon to the deep ocean. However, the magnitude of this transport is still poorly known. In order to assess this active flux of carbon, we performed a preliminary study of mesopelagic organisms around the Canary Islands. Here we present the results of diet, daily rations and feeding chronology of Lobianchia dofleini, Hygophum hygomii and Ceratoscopelus maderensis, 3 dominant species of myctophids performing diel vertical migrations in the Subtropical Eastern North Atlantic Ocean. Samples were obtained on board the RV La Bocaina during June 2009. Myctophids were sorted and fixed in 4% buffered formalin and the stomach contents of target species were examined and weighted. Feeding chronology was approached by studying stomach fullness and state of digestion of prey items in individuals from hauls performed at different times and depths. Our results provide further information about lanternfishes feeding ecology in relation to their vertical migration patterns as well as their contribution to the biological carbon pump.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The icefish (Neosalanx taihuensis) of Lake Chaohu, China, foraged almost exclusively on crustacean zooplankton in both spring and summer. The icefish showed diurnal feeding periodicity, with peak feeding in the morning. No food was observed in icefish guts collected at night. Our results indicate that that the icefish was a particulate feeder and light intensity greatly affected its foraging on zooplankton. Daily consumption of zooplankton by icefish varied significantly both diurnally and among seasons, which ranged from 0.22 to 2.23 g (wet weight) per 100 g wet fish weight at temperatures between 16.3 degrees C (spring) and 28.8 degrees C (summer).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three large fish pens (0.36 km(2) of each) stocked with silver and bighead carp were set up in Meiliang Bay for controlling toxic Microcystis blooms. The responses of plankton communities and food consumption of silver and bighead carp were studied. Crustacean zooplankton were significantly suppressed in the fish pens. Total phytoplankton biomass, Microcystis biomass and microcystin concentration were lower in the fish pens than in the surrounding lake water, but the difference was not statistically significant. The present stocking density of silver plus bighead carp (about 40 g/m(3) in July) was likely too low to achieve an adequate control of Microcystis. Silver carp fed mainly on phytoplankton but bighead carp mainly on zooplankton: mean zooplankton contribution in the gut was 31.5% for silver carp and 64.7% for bighead carp. Compared with previous studies, both carp species preyed upon more zooplankton because of the abundant food resource. Daily rations of silver and bighead carp were estimated by Egger's model in the main growing season. Filtration rate was calculated from the daily ration and the density of plankton in the lake. During May-October, filtration rates of silver and bighead carp for phytoplankton were 0.22-1.53 L g(-1) h(-1) and 0.02-0.68 L g(-1) h(-1), respectively, and filtration rates for zooplankton were 0.24-0.44 L g(-1) h(-1) and 0.08-1.41 L g(-1) h(-1), respectively. Silver carp had a stronger ability of eliminating phytoplankton than bighead carp. To achieve a successful bioniampulation with a minimum effect of ichthyoeutrophication, the stocking proportion of bighead carp should be controlled in the future practice. (c) 2007 Elsevier B.V All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The food of Ethmalosa fimbriata in the central part of the Ebrié lagoon, where the salinity is low, consists on limnic phytoplankton. In the region near Abidjan, which is more strongly influenced by coastal water, it consists of marine phyto- and zooplankton. The daily ration of a 12.5 cm fork-length fish is estimated to be between 2 and 3 % of its body weight.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fish culture experiments were conducted to compare and evaluate the feeding pattern and strategies, daily ration, gastric evacuation rates, dietary breadth, similarity and overlap of silver barb, Barbodes gonionotus, and tilapia, Oreochromis sp. (natural hybrid of O. mossambicus x O. niloticus) in a rice-fish system. B. gonionotus was found to be a macrophtophagous column feeder while Oreochromis sp. was a detrivorous benthophagic browser. Ontogenic shifts in diet were clearly observed in B. gonionotus while absent in Oreochromis sp. For both species, daily food ration for the small fish was twice as large as that for the large fish. Mean rates of gastric evacuation were 0.18 h super(1) for small and 0.05 h super(1) for large B. gonionotus and 0.09 h super(1) and 0.14h super(1) for small and large Oreochromis sp., respectively. In terms of intraspecific dietary width, the smaller sized individuals of both species had a wider dietary niche than the larger conspecifics. Larger fish increased their specialization and reliance on few food items with increasing size and competitive ability. When both species were reared together, B. gonionotus showed a wider niche width than tilapia. Wider interspecific niche width of B. gonionotus compared to that of tilapia and significant interspecific dietary overlap is likely to result in suppression of the growth of tilapia in mixed culture due to: 1) a high degree of specialization and reliance of tilapia on food of low-nutrient value, and 2) slower gastric evacuation rates as compared to B. gonionotus, which would allow B. gonionotus to outgrow similar sized tilapia.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A laboratory-feeding trail was conducted for 45 days with fry of common carp Cyprinus carpio L. (0.45±0.03g) in aquaria in a static indoor fish rearing system. The fry were fed on a pelleted diet containing 33% crude protein having fishmeal as major protein source. The fish fry in five treatments A, B, C, D, and E, each with two replicates were fed on 5% daily ration divided into different feeding frequencies of 2, 3, 4, 5 and 6 times a day respectively in order to observe the growth performance. Each replicate contained 15 fry having total initial weight of 6.87±0.31g. At the end of the feeding trial, significantly different and higher (p<0.05) growth response was observed in treatment C having a feeding frequencies of 4 times a day. Significantly the highest and the lowest percent growth of 334.30 and 218.91% were observed in fish fed on the diet (Treatment C) with 4 times and (Treatment A) 2 times feeding frequencies per day, respectively. Food conversion ratio (FCR) of 1.78 was significantly higher (pfish fed on the diet having 2 times feeding frequencies whereas, the least value of 1.22 was obtained in fish fed on the diet with 4 times daily feeding. Protein efficiency ratio (PER) ranged from 1.68 in fish in treatment A having a feeding frequencies of 2 times per day to 2.48 in fish in treatment C fed on the diet with 4 times feeding frequencies. Other growth parameters viz, specific growth rate (SGR), apparent protein digestibility (ADP) were also higher in treatment C than the other treatments. The results of the present study demonstrated that the growth performance of C. carpio was the best at 4 times feeding in a day using 33% dietary protein containing fish meal as major protein source.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To investigate the effect of protein restriction with subsequent re-alimentation on nutrient utilization, hematological and biochemical changes of Indian major carp, Rohu (Labeo rohita H.), 150 acclimatized Rohu fingerlings (average 20.74 ± 0.13 g) divided into five experimental groups (30 fingerlings in each groups with three replications with 10 fingerlings in each) for experimental trial of 90 days using completely randomized design. Control group (T sub(CPR)) was fed with feed having 30% crude protein at 3% of body weight for 90 days trial period. Other experimental groups T sub(1PR) was alternatively 3 days fed with feed having 20% CP and 30% CP at 3% of body weight, T sub(2PR) was alternatively 7 days fed with feed having 20% CP and 30% CP at 3% of body weight, T sub(3PR) was alternatively 15 days fed with feed having 20% CP and 30% CP at 3% of body weight and T sub(4PR) was alternatively 25 days fed with feed having 20% CP and 30% CP at 3% of body weight during 90 days trial period with daily ration in two equal halves at morning and afternoon. It was noticed that retention of different nutrients was almost similar among all treatment groups indicated improvement of digestibility of nutrients might not be the mechanisms for recovery growth in carps. Increased percent feed intake of body weight (hyperphagia) (4.14 ± 0.30 or 4.94 ± 0.46 and 3.33 ± 0.29), improved specific growth rate (1.86 ± 0.09 or 2.26 ± 0.05 and 1.43 ± 0.01), absolute growth rate (1.57 ± 0.08 or 1.84 ± 0.18 and 1.36 ± 0.12), protein efficiency ratio (1.19 ± 0.11 or1.16 ± 0.12 and 1.05 ± 0.09) were the important mechanism showing better performance index (21.60 ± 1.09 or 23.80 ± 0.21 and 19.45 ± 0.37) through which the experimental groups which were protein restricted and re-alimented at 3 or 7 days alternatively during 90 days trial period could able to compensate the growth retardation and to catch up the final body weight of control (128.68 ± 11.53 g/f) but other experimental groups failed to compensate during 90 days trial period. Result of the present study indicated that deprived fish i.e., fish received alternate 3 or 7 days protein restriction and re-alimentation showed recovery growth had still lower values of Hb (10.21 ± 0.02, and 9.88 ± 0.04 g/dl), hematocrit value (30.62 ± 0.05 and 26.64 ± 0.11%), total erythrocytic count (3.40 ± 0.01 and 3.29 ± 0.01 X10super(6) mm³), plasma glucose (126.93 ± 0.20 and 126.67 ± 0.05 mg/dl), total plasma lipid (1.04 ± 0.01 and 1.02 ± 0.01 g/dl) and liver glycogen (290.10 ± 0.80 and 288.99 ± 0.95 mg/kg) in comparison to control (10.56 ± 0.08 g/dl, 31.68 ± 0.24%, 3.52 ± 0.03 X10super(6) mm³, 128.23 ± 0.25 mg/dl, 1.07 ± 0.01g/dl and 292.00 ± 0.23 mg/kg) at the end of 90 days trial but total plasma protein in deprived group was compensated with advancement of trial period. All hematological and biochemical parameters studied were proportionately lowered in the experimental group got higher degree of deprivation. These findings suggested that with the increase of trial length complete compensation of hematological and biochemical profiles of rohu might be achieved. The results indicated that the implementation of alternative 7 days low and high protein diet feeding during aquaculture of carps could make economize the operation through minimizing the feed input cost.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis) were used as a new pen-cultureed biomanipulation technique to control algal blooms in Meiliang Bay of Lake Taihu. In order to evaluate the capacity of these two fishes to decrease algal blooms, diel feeding samplings were carried out in May (without algal blooms) and September (with algal blooms) in 2005. Based on estimated food consumption by the Elliott-Persson model, silver carp increased daily food consumption from 2.07 g dry weight per 100 g wet body weight in May before the outbreak of algal blooms to 4.98 g dry weight per 100 g wet body weight in September during algal blooms outbreak. However, no obvious variation of food consumption was observed in bighead carp during the study period. This species 1.88 and 1.54 g dry weight of plankton per 100 g wet body weight in May and September, respectively. Silver carp had a higher feeding capacity for plankton than bighead carp. Biotic factors (i.e., fish size and conspecific competition with natural species in the lake) may affect the feeding behaviors of both carps as well as seasonal variation of plankton communities in the pen.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The contribution of growth and turnover to the muscle delta C-13 change process was investigated using mathematical models which associate delta C-13 change to time of intake of a new diet or increase in body mass. Two groups of Nile tilapia (Oreochromis niloticus) were fed on diets based on C3 (sigma C-13 = - 25.64 +/- 0.06 parts per thousand) or C4 (delta C-13= -16.01 +/- 0.06 parts per thousand) photosynthetic cycle plants to standardize the muscle delta C-13. After establishing the carbon isotopic equilibrium, fish (mean mass 24.12 +/- 6.79 g) then received the other treatment diet until a new carbon isotopic equilibrium could be established, characterizing T1 (C3-C4) and T2 (C4-C3) treatments. No significant differences were observed in fish productive performance. Good fits were obtained for the models that associated the delta C-13 change to time, resulting in carbon half-life values of 23.33 days for T1 and 25.96 days for T2. Based on values found for the muscle delta C-13 change rate from growth (0.0263 day(-1) and 0.0254 day(-1)) and turnover (0.0034 day(-1) and 0.0013 day(-1)), our results indicate that most of the delta C-13 change could be attributed to growth. The application of model that associated the delta C-13 change to body mass increase seems to produce results with no apparent biological explanation. The delta C-13 change rate could directly reflect the daily ration and growth rate, and consequently the isotopic change rates of carbon and other tissue elements can be properly used to assess different factors that may interfere in nutrient utilization and growth. (c) 2006 Published by Elsevier B.V.