997 resultados para FIR digital filter
Resumo:
Residue Number System (RNS) based Finite Impulse Response (FIR) digital filters and traditional FIR filters. This research is motivated by the importance of an efficient filter implementation for digital signal processing. The comparison is done in terms of speed and area requirement for various filter specifications. RNS based FIR filters operate more than three times faster and consumes only about 60% of the area than traditional filter when number of filter taps is more than 32. The area for RNS filter is increasing at a lesser rate than that for traditional resulting in lower power consumption. RNS is a nonweighted number system without carry propogation between different residue digits.This enables simultaneous parallel processing on all the digits resulting in high speed addition and multiplication in the RNS domain
Digital filtering of oscillations intrinsic to transmission line modeling based on lumped parameters
Resumo:
A correction procedure based on digital signal processing theory is proposed to smooth the numeric oscillations in electromagnetic transient simulation results from transmission line modeling based on an equivalent representation by lumped parameters. The proposed improvement to this well-known line representation is carried out with an Finite Impulse Response (FIR) digital filter used to exclude the high-frequency components associated with the spurious numeric oscillations. To prove the efficacy of this correction method, a well-established frequency-dependent line representation using state equations is modeled with an FIR filter included in the model. The results obtained from the state-space model with and without the FIR filtering are compared with the results simulated by a line model based on distributed parameters and inverse transforms. Finally, the line model integrated with the FIR filtering is also tested and validated based on simulations that include nonlinear and time-variable elements. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
"Cornell Aeronautical Laboratory, Inc. has assigned Report no. XA-2177-B-1 to this document."
Resumo:
A new simple method to design linear-phase finite impulse response (FIR) digital filters, based on the steepest-descent optimization method, is presented in this paper. Starting from the specifications of the desired frequency response and a maximum approximation error a nearly optimum digital filter is obtained. Tests have shown that this method is alternative to other traditional ones such as Frequency Sampling and Parks-McClellan, mainly when other than brick wall frequency response is required as a desired frequency response. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The aim of this work was to select an appropriate digital filter for a servo application and to filter the noise from the measurement devices. Low pass filter attenuates the high frequency noise beyond the specified cut-off frequency. Digital lowpass filters in both IIR and FIR responses were designed and experimentally compared to understand their characteristics from the corresponding step responses of the system. Kaiser Windowing and Equiripple methods were selected for FIR response, whereas Butterworth, Chebyshev, InverseChebyshev and Elliptic methods were designed for IIR case. Limitations in digital filter design for a servo system were analysed. Especially the dynamic influences of each designed filter on the control stabilityof the electrical servo drive were observed. The criterion for the selection ofparameters in designing digital filters for servo systems was studied. Control system dynamics was given significant importance and the use of FIR and IIR responses in different situations were compared to justify the selection of suitableresponse in each case. The software used in the filter design was MatLab/Simulink® and dSPACE's DSP application. A speed controlled Permanent Magnet Linear synchronous Motor was used in the experimental work.
Resumo:
A ciência na qual se estuda a deformação de um fluido no qual é aplicada uma tensão de cisalhamento é conhecida como reologia e o equipamento utilizado para a realização dos ensaios é chamado de reômetro. Devido a impraticabilidade de uso de reômetros comerciais, diversos pesquisadores desenvolveram reômetros capazes de analisar suspensões de macropartículas, baseados nos mesmos princípios de funcionamento dos equipamentos já existentes. Em alguns casos, a medição do torque do motor é realizada pela aquisição da tensão, uma vez que esta é proporcional ao torque. Entretanto, para melhor compreensão do resultado e para evitar a possibilidade de conclusões precipitadas, vê-se necessária correta interpretação do sinal elétrico, precisando avaliar qual frequência do sinal é relevante para o ensaio e, também, qual a melhor taxa de amostragem. Além da aquisição, para que o ensaio reológico seja realizado com precisão, é indispensável ótimo controle da taxa ou tensão do motor e uma alternativa é a utilização de um servomotor e um servoconversor. No caso desse ser comercial é essencial saber configurá-lo. Para facilitar o usuário leigo, alguns pesquisadores desenvolveram softwares para controle do equipamento e análise dos dados. Assim, o presente trabalho tem como objetivo propor uma metodologia para compreender o sinal aquisitado de um reômetro servo controlado e desenvolvimento do software de análise para o tratamento dos dados obtidos a partir de ensaios reológicos. Verificou-se a melhor configuração do servocontrolador, a melhor taxa de amostragem, de no mínimo 20 amostras/segundo, e, também, desenvolveu-se um filtro digital passa-baixa do tipo FIR para remover a frequência indesejada. Além disso, foi desenvolvido um software utilizando uma rotina em Matlab e uma interface gráfica do usuário (Graphical User Interface - GUI), para o pós-processamento dos dados para auxiliar o usuário leigo no tratamento e interpretação do resultado, que se mostrou eficaz.
Resumo:
Over the last couple of decades, many methods for synchronizing chaotic systems have been proposed with communications applications in view. Yet their performance has proved disappointing in face of the nonideal character of usual channels linking transmitter and receiver, that is, due to both noise and signal propagation distortion. Here we consider a discrete-time master-slave system that synchronizes despite channel bandwidth limitations and an allied communication system. Synchronization is achieved introducing a digital filter that limits the spectral content of the feedback loop responsible for producing the transmitted signal. Copyright (C) 2009 Marcio Eisencraft et al.
Resumo:
Due to the broadband characteristic of chaotic signals, many of the methods that have been proposed for synchronizing chaotic systems do not usually present a satisfactory performance when applied to bandlimited communication channels. Here, the effects of bandwidth limitations imposed by the channel on the synchronous solution of a discrete-time chaotic master-slave network are investigated. The discrete-time system considered in this study is the Henon map. It is analytically shown that synchronism can be achieved in such a network by introducing a digital filter in the feedback loop responsible for generating the chaotic signal that will be sent to the slave node. Numerical simulations relating the filter parameters, such as its order and cut-off frequency, to the maximum Lyapunov exponent of the master node, which determines if the transmitted signal is chaotic or not, are also presented. These results can be useful for practical communication schemes based on chaos.
Resumo:
The collection of spatial information to quantify changes to the state and condition of the environment is a fundamental component of conservation or sustainable utilization of tropical and subtropical forests, Age is an important structural attribute of old-growth forests influencing biological diversity in Australia eucalypt forests. Aerial photograph interpretation has traditionally been used for mapping the age and structure of forest stands. However this method is subjective and is not able to accurately capture fine to landscape scale variation necessary for ecological studies. Identification and mapping of fine to landscape scale vegetative structural attributes will allow the compilation of information associated with Montreal Process indicators lb and ld, which seek to determine linkages between age structure and the diversity and abundance of forest fauna populations. This project integrated measurements of structural attributes derived from a canopy-height elevation model with results from a geometrical-optical/spectral mixture analysis model to map forest age structure at a landscape scale. The availability of multiple-scale data allows the transfer of high-resolution attributes to landscape scale monitoring. Multispectral image data were obtained from a DMSV (Digital Multi-Spectral Video) sensor over St Mary's State Forest in Southeast Queensland, Australia. Local scene variance levels for different forest tapes calculated from the DMSV data were used to optimize the tree density and canopy size output in a geometric-optical model applied to a Landsat Thematic Mapper (TU) data set. Airborne laser scanner data obtained over the project area were used to calibrate a digital filter to extract tree heights from a digital elevation model that was derived from scanned colour stereopairs. The modelled estimates of tree height, crown size, and tree density were used to produce a decision-tree classification of forest successional stage at a landscape scale. The results obtained (72% accuracy), were limited in validation, but demonstrate potential for using the multi-scale methodology to provide spatial information for forestry policy objectives (ie., monitoring forest age structure).
Resumo:
In this paper we use the mixture of topological and measure-theoretic dynamical approaches to consider riddling of invariant sets for some discontinuous maps of compact regions of the plane that preserve two-dimensional Lebesgue measure. We consider maps that are piecewise continuous and with invertible except on a closed zero measure set. We show that riddling is an invariant property that can be used to characterize invariant sets, and prove results that give a non-trivial decomposion of what we call partially riddled invariant sets into smaller invariant sets. For a particular example, a piecewise isometry that arises in signal processing (the overflow oscillation map), we present evidence that the closure of the set of trajectories that accumulate on the discontinuity is fully riddled. This supports a conjecture that there are typically an infinite number of periodic orbits for this system.
Resumo:
O projeto realizado teve como tema a aplicação das derivadas e integrais fraccionários para a implementação de filtros digitais numa perspetiva de processamento digital de sinais. Numa primeira fase do trabalho, é efetuado uma abordagem teórica sobre os filtros digitais e o cálculo fraccionário. Estes conceitos teóricos são utilizados posteriormente para o desenvolvimento do presente projeto. Numa segunda fase, é desenvolvida uma interface gráfica em ambiente MatLab, utilizando a ferramenta GUIDE. Esta interface gráfica tem como objetivo a implementação de filtros digitais fraccionários. Na terceira fase deste projeto são implementados os filtros desenvolvidos experimentalmente através do ADSP-2181, onde será possível analisar e comparar os resultados experimentais com os resultados obtidos por simulação no MatLab. Como quarta e última fase deste projeto é efetuado uma reflexão sobre todo o desenvolvimento da Tese e o que esta me proporcionou. Com este relatório pretendo apresentar todo o esforço aplicado na realização deste trabalho, bem como alguns dos conhecimentos adquiridos ao longo do curso.
Resumo:
OBJECTIVE: To assess signal-averaged electrocardiogram (SAECG) for diagnosing incipient left ventricular hypertrophy (LVH). METHODS: A study with 115 individuals was carried out. The individuals were divided as follows: GI - 38 healthy individuals; GII - 47 individuals with mild to moderate hypertension and normal findings on echocardiogram and ECG; and GIII - 30 individuals with hypertension and documented LVH. The magnitude vector of the SAECG was analyzed with the high-pass cutoff frequency of 40 Hz through the bidirectional four-pole Butterworth high-pass digital filter. The mean quadratic root of the total QRS voltage (RMST) and the two-dimensional integral of the QRS area of the spectro-temporal map were analyzed between 0 and 30 Hz for the frequency domain (Int FD), and between 40 and 250 Hz for the time domain (Int TD). The electrocardiographic criterion for LVH was based on the Cornell Product. Left ventricular mass was calculated with the Devereux formula. RESULTS: All parameters analyzed increased from GI to GIII, except for Int FD (GII vs GIII) and RMST log (GII vs GIII). Int TD showed greater accuracy for detecting LVH with an appropriate cutoff > 8 (sensitivity of 55%, specificity of 81%). Positive values (> 8) were found in 56.5% of the G II patients and in 18.4% of the GI patients (p< 0.0005). CONCLUSION: SAECG can be used in the early diagnosis of LVH in hypertensive patients with normal ECG and echocardiogram.
Resumo:
We have constructed a forward modelling code in Matlab, capable of handling several commonly used electrical and electromagnetic methods in a 1D environment. We review the implemented electromagnetic field equations for grounded wires, frequency and transient soundings and present new solutions in the case of a non-magnetic first layer. The CR1Dmod code evaluates the Hankel transforms occurring in the field equations using either the Fast Hankel Transform based on digital filter theory, or a numerical integration scheme applied between the zeros of the Bessel function. A graphical user interface allows easy construction of 1D models and control of the parameters. Modelling results are in agreement with other authors, but the time of computation is less efficient than other available codes. Nevertheless, the CR1Dmod routine handles complex resistivities and offers solutions based on the full EM-equations as well as the quasi-static approximation. Thus, modelling of effects based on changes in the magnetic permeability and the permittivity is also possible.
Resumo:
Instrumental data always present some noise. The analytical data information and instrumental noise generally has different frequencies. Thus is possible to remove the noise using a digital filter based on Fourier transform and inverse Fourier transform. This procedure enhance the signal/noise ratio and consecutively increase the detection limits on instrumental analysis. The basic principle of Fourier transform filter with modifications implemented to improve its performance is presented. A numerical example, as well as a real voltammetric example are showed to demonstrate the Fourier transform filter implementation. The programs to perform the Fourier transform filter, in Matlab and Visual Basic languages, are included as appendices
Resumo:
In this study, we compare two different cyclone-tracking algorithms to detect North Atlantic polar lows, which are very intense mesoscale cyclones. Both approaches include spatial filtering, detection, tracking and constraints specific to polar lows. The first method uses digital bandpass-filtered mean sea level pressure (MSLP) fieldsin the spatial range of 200�600 km and is especially designed for polar lows. The second method also uses a bandpass filter but is based on the discrete cosine transforms (DCT) and can be applied to MSLP and vorticity fields. The latter was originally designed for cyclones in general and has been adapted to polar lows for this study. Both algorithms are applied to the same regional climate model output fields from October 1993 to September 1995 produced from dynamical downscaling of the NCEP/NCAR reanalysis data. Comparisons between these two methods show that different filters lead to different numbers and locations of tracks. The DCT is more precise in scale separation than the digital filter and the results of this study suggest that it is more suited for the bandpass filtering of MSLP fields. The detection and tracking parts also influence the numbers of tracks although less critically. After a selection process that applies criteria to identify tracks of potential polar lows, differences between both methods are still visible though the major systems are identified in both.