10 resultados para FINFLO


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Centrifugal compressors are widely used for example in process industry, oil and gas industry, in small gas turbines and turbochargers. In order to achieve lower consumption of energy and operation costs the efficiency of the compressor needs to be improve. In the present work different pinches and low solidity vaned diffusers were utilized in order to improve the efficiency of a medium size centrifugal compressor. In this study, pinch means the decrement of the diffuser flow passage height. First different geometries were analyzed using computational fluid dynamics. The flow solver Finflo was used to solve the flow field. Finflo is a Navier-Stokes solver. The solver is capable to solve compressible, incompressible, steady and unsteady flow fields. Chien's k-e turbulence model was used. One of the numerically investigated pinched diffuser and one low solidity vaned diffuser were studied experimentally. The overall performance of the compressor and the static pressure distribution before and after the diffuser were measured. The flow entering and leaving the diffuser was measured using a three-hole Cobra-probe and Kiel-probes. The pinch and the low solidity vaned diffuser increased the efficiency of the compressor. Highest isentropic efficiency increment obtained was 3\% of the design isentropic efficiency of the original geometry. It was noticed in the numerical results that the pinch made to the hub and the shroud wall was most beneficial to the operation of the compressor. Also the pinch made to the hub was better than the pinchmade to the shroud. The pinch did not affect the operation range of the compressor, but the low solidity vaned diffuser slightly decreased the operation range.The unsteady phenomena in the vaneless diffuser were studied experimentally andnumerically. The unsteady static pressure was measured at the diffuser inlet and outlet, and time-accurate numerical simulation was conducted. The unsteady static pressure showed that most of the pressure variations lay at the passing frequency of every second blade. The pressure variations did not vanish in the diffuser and were visible at the diffuser outlet. However, the amplitude of the pressure variations decreased in the diffuser. The time-accurate calculations showed quite a good agreement with the measured data. Agreement was very good at the design operation point, even though the computational grid was not dense enough inthe volute and in the exit cone. The time-accurate calculation over-predicted the amplitude of the pressure variations at high flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small centrifugal compressors are more and more widely used in many industrialsystems because of their higher efficiency and better off-design performance comparing to piston and scroll compressors as while as higher work coefficient perstage than in axial compressors. Higher efficiency is always the aim of the designer of compressors. In the present work, the influence of four partsof a small centrifugal compressor that compresses heavy molecular weight real gas has been investigated in order to achieve higher efficiency. Two parts concern the impeller: tip clearance and the circumferential position of the splitter blade. The other two parts concern the diffuser: the pinch shape and vane shape. Computational fluid dynamics is applied in this study. The Reynolds averaged Navier-Stokes flow solver Finflo is used. The quasi-steady approach is utilized. Chien's k-e turbulence model is used to model the turbulence. A new practical real gas model is presented in this study. The real gas model is easily generated, accuracy controllable and fairly fast. The numerical results and measurements show good agreement. The influence of tip clearance on the performance of a small compressor is obvious. The pressure ratio and efficiency are decreased as the size of tip clearance is increased, while the total enthalpy rise keeps almost constant. The decrement of the pressure ratio and efficiency is larger at higher mass flow rates and smaller at lower mass flow rates. The flow angles at the inlet and outlet of the impeller are increased as the size of tip clearance is increased. The results of the detailed flow field show that leakingflow is the main reason for the performance drop. The secondary flow region becomes larger as the size of tip clearance is increased and the area of the main flow is compressed. The flow uniformity is then decreased. A detailed study shows that the leaking flow rate is higher near the exit of the impeller than that near the inlet of the impeller. Based on this phenomenon, a new partiallyshrouded impeller is used. The impeller is shrouded near the exit of the impeller. The results show that the flow field near the exit of the impeller is greatly changed by the partially shrouded impeller, and better performance is achievedthan with the unshrouded impeller. The loading distribution on the impeller blade and the flow fields in the impeller is changed by moving the splitter of the impeller in circumferential direction. Moving the splitter slightly to the suction side of the long blade can improve the performance of the compressor. The total enthalpy rise is reduced if only the leading edge of the splitter ismoved to the suction side of the long blade. The performance of the compressor is decreased if the blade is bended from the radius direction at the leading edge of the splitter. The total pressure rise and the enthalpy rise of thecompressor are increased if pinch is used at the diffuser inlet. Among the fivedifferent pinch shape configurations, at design and lower mass flow rates the efficiency of a straight line pinch is the highest, while at higher mass flow rate, the efficiency of a concave pinch is the highest. The sharp corner of the pinch is the main reason for the decrease of efficiency and should be avoided. The variation of the flow angles entering the diffuser in spanwise direction is decreased if pinch is applied. A three-dimensional low solidity twisted vaned diffuser is designed to match the flow angles entering the diffuser. The numerical results show that the pressure recovery in the twisted diffuser is higher than in a conventional low solidity vaned diffuser, which also leads to higher efficiency of the twisted diffuser. Investigation of the detailed flow fields shows that the separation at lower mass flow rate in the twisted diffuser is later than in the conventional low solidity vaned diffuser, which leads to a possible wider flow range of the twisted diffuser.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work deals with the cooling of high-speed electric machines, such as motors and generators, through an air gap. It consists of numerical and experimental modelling of gas flow and heat transfer in an annular channel. Velocity and temperature profiles are modelled in the air gap of a high-speed testmachine. Local and mean heat transfer coefficients and total friction coefficients are attained for a smooth rotor-stator combination at a large velocity range. The aim is to solve the heat transfer numerically and experimentally. The FINFLO software, developed at Helsinki University of Technology, has been used in the flow solution, and the commercial IGG and Field view programs for the grid generation and post processing. The annular channel is discretized as a sector mesh. Calculation is performed with constant mass flow rate on six rotational speeds. The effect of turbulence is calculated using three turbulence models. The friction coefficient and velocity factor are attained via total friction power. The first part of experimental section consists of finding the proper sensors and calibrating them in a straight pipe. After preliminary tests, a RdF-sensor is glued on the walls of stator and rotor surfaces. Telemetry is needed to be able to measure the heat transfer coefficients at the rotor. The mean heat transfer coefficients are measured in a test machine on four cooling air mass flow rates at a wide Couette Reynolds number range. The calculated values concerning the friction and heat transfer coefficients are compared with measured and semi-empirical data. Heat is transferred from the hotter stator and rotor surfaces to the coolerair flow in the air gap, not from the rotor to the stator via the air gap, althought the stator temperature is lower than the rotor temperature. The calculatedfriction coefficients fits well with the semi-empirical equations and precedingmeasurements. On constant mass flow rate the rotor heat transfer coefficient attains a saturation point at a higher rotational speed, while the heat transfer coefficient of the stator grows uniformly. The magnitudes of the heat transfer coefficients are almost constant with different turbulence models. The calibrationof sensors in a straight pipe is only an advisory step in the selection process. Telemetry is tested in the pipe conditions and compared to the same measurements with a plain sensor. The magnitudes of the measured data and the data from the semi-empirical equation are higher for the heat transfer coefficients than thenumerical data considered on the velocity range. Friction and heat transfer coefficients are presented in a large velocity range in the report. The goals are reached acceptably using numerical and experimental research. The next challenge is to achieve results for grooved stator-rotor combinations. The work contains also results for an air gap with a grooved stator with 36 slots. The velocity field by the numerical method does not match in every respect the estimated flow mode. The absence of secondary Taylor vortices is evident when using time averagednumerical simulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a centrifugal compressor the flow around the diffuser is collected and led to the pipe system by a spiral-shaped volute. In this study a single-stage centrifugal compressor with three different volutes is investigated. The compressorwas first equipped with the original volute, the cross-section of which was a combination of a rectangle and semi-circle. Next a new volute with a fully circular cross-section was designed and manufactured. Finally, the circular volute wasmodified by rounding the tongue and smoothing the tongue area. The overall performance of the compressor as well as the static pressure distribution after the impeller and on the volute surface were measured. The flow entering the volute was measured using a three-hole Cobra-probe, and flow visualisations were carriedout in the exit cone of the volute. In addition, the radial force acting on theimpeller was measured using magnetic bearings. The complete compressor with thecircular volute (inlet pipe, full impeller, diffuser, volute and outlet pipe) was also modelled using computational fluid dynamics (CFD). A fully 3-D viscous flow was solved using a Navier-Stokes solver, Finflo, developed at Helsinki University of Technology. Chien's k-e model was used to take account of the turbulence. The differences observed in the performance of the different volutes were quite small. The biggest differences were at low speeds and high volume flows,i.e. when the flow entered the volute most radially. In this operating regime the efficiency of the compressor with the modified circular volute was about two percentage points higher than with the other volutes. Also, according to the Cobra-probe measurements and flow visualisations, the modified circular volute performed better than the other volutes in this operating area. The circumferential static pressure distribution in the volute showed increases at low flow, constant distribution at the design flow and decrease at high flow. The non-uniform static pressure distribution of the volute was transmitted backwards across the vaneless diffuser and observed at the impeller exit. At low volume flow a strong two-wave pattern developed into the static pressure distribution at the impeller exit due to the response of the impeller to the non-uniformity of pressure. The radial force of the impeller was the greatest at the choke limit, the smallest atthe design flow, and moderate at low flow. At low flow the force increase was quite mild, whereas the increase at high flow was rapid. Thus, the non-uniformityof pressure and the force related to it are strong especially at high flow. Theforce caused by the modified circular volute was weaker at choke and more symmetric as a function of the volume flow than the force caused by the other volutes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Työn tavoitteena oli tutkia aaltomaisen profiloinnin vaikutusta suorien jäähdytyskanavien lämmönsiirtoon ja painehäviöön. Erilaisia profiileja oli kymmenen kappaletta ja ne olivat 5mm leveitä ja 30cm pitkiä kukin. Ne laskettiin kolmeulotteisina tapauksina FINFLO-virtausratkaisijalla kolmella eri Reynoldsin luvulla, jotka vastasivat laminaarista, osittain turbulenttista ja lähes kokonaan turbulenttista virtausta. Lämmönsiirtoaine oli kuiva +30°C ilma ja profiloinnin toteutustapa oli toisiaan sivuavat ympyräkaaret kolmella erilaisella säteen arvolla ja kolmella erilaisella aallonpituuden arvolla. Lisäksi laskettiin saman levyisen tasokanavan arvot jokaisella Reynoldsin luvulla kaksiulotteisina tapauksina. Näitä profiloimattomia kanavia pidettiin referenssitapauksina. Tuloksena havaittiin että profiloimalla saadaan yksiselitteisesti suurempi lämpöteho ulos samasta tilavuudesta. Lämmönsiirtokerroin kasvaa profiloinnin avulla parhaimmillaan n. 20% käytetystä turbulenssimallista tai lämmönsiirtokertoimen määritelmästä riippumatta. Painehäviö kasvaa myös aina, mutta kitkakerroin voi hieman pienentyä. Profiilin varsinaisena hyvyyskriteerinä pidettiin lämmönsiirtokertoimen ja kitkakertoimen suhdetta h/f. Se osoittautui riippuvaksi Reynoldsin luvusta ja turbulenssimallista; ASM ja Chien k-έ -mallit ennustavat transitioetäisyyden eri tavalla. Laminaarisilla virtauksilla h/f :n vaihtelu oli vähäistä; suhde vaihteli vain ±5% eri profiilien kesken. ASM-mallilla havaittiin sekundääripyörteilyä, ehkä siksi että se mallintaa anisotrooppisen turbulenssin. Chien k-έ malli ennusti suuremman ja aikaisemmin alkavan turbulenttisuuden kuin ASM. Lisäksi havaittiin mm. että tietyillä profiileilla muodostuu kanavan kapeimpaan kohtaan selvä virtausnopeuden paikallinen minimi seinämän läheisyyden takia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diplomityössä mallinnetaan numeerisesti radiaalikompressorin spiraalin virtaus. Spiraalin tarkoituksena radiaalikompressorissa on kerätä tasaisesti virtaus diffuusorin kehältä. Spiraaliin on viime aikoina kiinnitetty enemmän huomiota, koska on havaittu, että kompressorin hyötysuhdetta voidaan parantaa spiraalia optimoimalla. Spiraalin toimintaa tarkastellaan kolmella eri massavirralla. Työn alussa käsitellään spiraalin toimintaperiaatteita. Numeerisena ratkaisijana käytetään Teknillisessä korkeakoulussa kehitettyä FIN-FLO -koodia. FINFLO -laskentaohjelmassa ratkaistaan Navier-Stokes yhtälöt kolmeulotteiselle laskenta-alueelle. Diskretointi perustuu kontrollitilavuus menetelmään. Työssä käsitellään laskentakoodin toimintaperiaatteitta. Turbulenssia mallinnetaan algebrallisella Baldwin-Lomaxin ja kahden yhtälön Chienin k-e turbulenssimalleilla. Laskentatuloksia verrataan Lappeenrannan teknillisessä korkeakoulussa tehtyihin mittauksiin kyseessä olevasta kompressorin spiraalista. Myös eri turbulenssimalleilla ja hilatasoilla saatuja tuloksia verrataan keskenään. Laskentatuloksien jälkikäsittelyä varten ohjelmoitiin neljä eri tietokoneohjelmaa. Laskennalla pyritään saamaan lisäselvyyttä virtauksen käyttäytymiseen spiraalissa ja erityisesti ns. kielen alueella. Myös kahden eri turbulenssimallin toimivuutta kompressorin numeerisessa mallinnuksessa tutkitaan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Centrifugal compressors are widely used for example in refrigeration processes, the oil and gas industry, superchargers, and waste water treatment. In this work, five different vaneless diffusers and six different vaned diffusers are investigated numerically. The vaneless diffusers vary only by their diffuser width, so that four of the geometries have pinch implemented to them. Pinch means a decrease in the diffuser width. Four of the vaned diffusers have the same vane turning angle and a different number of vanes, and two have different vane turning angles. The flow solver used to solve the flow fields is Finflo, which is a Navier-Stokes solver. All the cases are modeled with the Chien's k – έ- turbulence model, and selected cases are modeled also with the k – ώ-SST turbulence model. All five vaneless diffusers and three vaned diffusers are investigated also experimentally. For each construction, the compressor operating map is measured according to relevant standards. In addition to this, the flow fields before and after the diffuser are measured with static and total pressure, flow angle and total temperature measurements. When comparing the computational results to the measured results, it is evident that the k – ώ-SST turbulence model predicts the flow fields better. The simulation results indicate that it is possible to improve the efficiency with the pinch, and according to the numerical results, the two best geometries are the ones with most pinch at the shroud. These geometries have approximately 4 percentage points higher efficiency than the unpinched vaneless diffusers. The hub pinch does not seem to have any major benefits. In general, the pinches make the flow fields before and after the diffuser more uniform. The pinch also seems to improve the impeller efficiency. This is down to two reasons. The major reason is that the pinch decreases the size of slow flow and possible backflow region located near the shroud after the impeller. Secondly, the pinches decrease the flow velocity in the tip clearance, leading to a smaller tip leakage flow and therefore slightly better impeller efficiency. Also some of the vaned diffusers improve the efficiency, the increment being 1...3 percentage points, when compared to the vaneless unpinched geometry. The measurement results confirm that the pinch is beneficial to the performance of the compressor. The flow fields are more uniform with the pinched cases, and the slow flow regions are smaller. The peak efficiency is approximately 2 percentage points and the design point efficiency approximately 4 percentage points higher with the pinched geometries than with the un- pinched geometry. According to the measurements, the two best geometries are the ones with the most pinch at the shroud, the case with the pinch only at the shroud being slightly better of the two. The vaned diffusers also have better efficiency than the vaneless unpinched geometries. However, the pinched cases have even better efficiencies. The vaned diffusers narrow the operating range considerably, whilst the pinch has no significant effect on the operating range.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Supersonic axial turbine stages typically exhibit lower efficiencies than subsonic axial turbine stages. One reason for the lower efficiency is the occurrence of shock waves. With higher pressure ratios the flow inside the turbine becomes relatively easily supersonic if there is only one turbine stage. Supersonic axial turbines can be designed in smaller physical size compared to subsonic axial turbines of same power. This makes them good candidates for turbochargers in large diesel engines, where space can be a limiting factor. Also the production costs are lower for a supersonic axial turbine stage than for two subsonic stages. Since supersonic axial turbines are typically low reaction turbines, they also create lower axial forces to be compensated with bearings compared to high reaction turbines. The effect of changing the stator-rotor axial gap in a small high (rotational) speed supersonic axial flow turbine is studied in design and off-design conditions. Also the effect of using pulsatile mass flow at the supersonic stator inlet is studied. Five axial gaps (axial space between stator and rotor) are modeled using threedimensional computational fluid dynamics at the design and three axial gaps at the off-design conditions. Numerical reliability is studied in three independent studies. An additional measurement is made with the design turbine geometry at intermediate off-design conditions and is used to increase the reliability of the modelling. All numerical modelling is made with the Navier-Stokes solver Finflo employing Chien’s k ¡ ² turbulence model. The modelling of the turbine at the design and off-design conditions shows that the total-to-static efficiency of the turbine decreases when the axial gap is increased in both design and off-design conditions. The efficiency drops almost linearily at the off-design conditions, whereas the efficiency drop accelerates with increasing axial gap at the design conditions. The modelling of the turbine stator with pulsatile inlet flow reveals that the mass flow pulsation amplitude is decreased at the stator throat. The stator efficiency and pressure ratio have sinusoidal shapes as a function of time. A hysteresis-like behaviour is detected for stator efficiency and pressure ratio as a function of inlet mass flow, over one pulse period. This behaviour arises from the pulsatile inlet flow. It is important to have the smallest possible axial gap in the studied turbine type in order to maximize the efficiency. The results for the whole turbine can also be applied to some extent in similar turbines operating for example in space rocket engines. The use of a supersonic stator in a pulsatile inlet flow is shown to be possible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tämä diplomityö perustuu Lappeenrannan teknillisen yliopiston Uusiutuvien energiajärjestelmien laboratorion koelaitteistoon, jolla tutkitaan voimakkaan savukaasunkierrätyksen ja kuumailmapolton soveltuvuutta pienen kokoluokan energiantuotantoprosesseihin. Työn teoriaosassa esitellään tavanomaisesta palamisesta eroavaa kuumailmapolttoa ja tarkastellaan sen ominaisuuksia. Myös työssä käytetyn tutkimusmenetelmän, numeerisen virtauslaskennan, periaatteita ja ominaisuuksia tarkastellaan. Työssä tutkitaan numeerisella virtausmallinnuksella kuumailmapolttolaitteiston virtauskentän käyttäytymistä, kun takaisin tulipesään kierrätettävän savukaasun määrä sekä tulipesän lämpöhäviöiden suuruus vaihtelevat. Virtauskentän tarkastelu on tärkeää, sillä palamisilman ja kierrätetyn savukaasun täytyy sekoittua kuumailmapolton aikaansaamiseksi. Työn virtausmallinnus suoritettiin Finflo-virtausratkaisijalla kaksiulotteisena palamisreaktioita mallintamatta. Vaikka työssä käytetyt mallit olivat kaksiulotteisia ja niissä käytettiin yksinkertaistuksia, virtausten käyttäytymisestä tulipesässä saatiin olennaista tietoa, jota voidaan mahdollisesti hyödyntää jatkotutkimuksissa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tämän diplomityön tavoitteena on ollut suunnitella radiaalikompressori. Aluksi on tutustuttu radiaalikompressorissa tapahtuviin ilmiöihin, jonka jälkeen radiaalikompressori on suunniteltu. Reunaehtoina suunnittelussa olivat toimilaitteelta saatava teho 250 kW ja sen suurin pyörimisnopeus 500 Hz. Esisuunnittelu on tehty Virtaustekniikan laboratoriossa kehitetyllä CentriFlow-ohjelmalla. Juoksupyörän muoto on suunniteltu viskoosittomilla 2D-malleilla. Juoksupyörän muodon suunniittelussa on käytetty kaupallista AxCent-ohjelmaa. Juoksupyörän muoto on tarkistettu laskennallisen virtausdynamiikan avulla. Virtausmallinnuksessa käytettiin FinFlo-ohjelmaa. Suunnittelun ja mallinnuksen pohjalta valittiin kolme erilaista juoksupyörää valmistukseen.