929 resultados para FILLED TUBE COLUMNS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an investigation of design code provisions for steel-concrete composite columns. The study covers the national building codes of United States, Canada and Brazil, and the transnational EUROCODE. The study is based on experimental results of 93 axially loaded concrete-filled tubular steel columns. This includes 36 unpublished, full scale experimental results by the authors and 57 results from the literature. The error of resistance models is determined by comparing experimental results for ultimate loads with code-predicted column resistances. Regression analysis is used to describe the variation of model error with column slenderness and to describe model uncertainty. The paper shows that Canadian and European codes are able to predict mean column resistance, since resistance models of these codes present detailed formulations for concrete confinement by a steel tube. ANSI/AISC and Brazilian codes have limited allowance for concrete confinement, and become very conservative for short columns. Reliability analysis is used to evaluate the safety level of code provisions. Reliability analysis includes model error and other random problem parameters like steel and concrete strengths, and dead and live loads. Design code provisions are evaluated in terms of sufficient and uniform reliability criteria. Results show that the four design codes studied provide uniform reliability, with the Canadian code being best in achieving this goal. This is a result of a well balanced code, both in terms of load combinations and resistance model. The European code is less successful in providing uniform reliability, a consequence of the partial factors used in load combinations. The paper also shows that reliability indexes of columns designed according to European code can be as low as 2.2, which is quite below target reliability levels of EUROCODE. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the experimental results of 32 axially loaded concrete-filled steel tubular columns (CFT). The load was introduced only on the concrete core by means of two high strength steel cylinders placed at the column ends to evaluate the passive confinement provided by the steel tube. The columns were filled with structural concretes with compressive strengths of 30, 60, 80 and 100 MPa. The outer diameter (D) of the column was 114.3 mm, and the length/diameter (L/D) ratios considered were 3, 5, 7 and 10. The wall thicknesses of the tubes (t) were 3.35 mm and 6.0 mm, resulting in diameter/thickness (D/t) ratios of 34 and 19, respectively. The force vs. axial strain curves obtained from the tests showed, in general, a good post-peak behavior of the CFT columns, even for those columns filled with high strength concrete. Three analytical models of confinement for short concrete-filled columns found in the literature were used to predict the axial capacity of the columns tested. To apply these models to slender columns, a correction factor was introduced to penalize the calculated results, giving good agreement with the experimental values. Additional results of 63 CFT columns tested by other researchers were also compared to the predictions of the modified analytical models and presented satisfactory results. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper results of tests on 32 concrete-filled steel tubular columns under axial load are reported. The test parameters were the concrete compressive strength, the column slenderness (L/D) and the wall thickness (t). The test results were compared with predictions from the codes NBR 8800:2008 and EN 1994-1-1:2004 (EC4). The columns were 3, 5, 7 and 10 length to diameter ratios (L/D) and were tested with 30MPa, 60MPa, 80MPa and 100MPa concrete compressive strengths. The results of ultimate strength predicted by codes showed good agreement with experimental results. The results of NBR 8800 code were the most conservative and the EC4 showed the best results, in mean, but it was not conservative for usual concrete-filled short columns.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

RESUMEN Ante el incremento del uso de los perfiles de acero en nuestro medio, de una manera empírica en muchos de los casos, lo cual se convierte en una amenaza que atenta contra la seguridad de las personas, se realiza este trabajo que servirá como guía a todos los profesionales interesados en incrementar sus conocimientos e incursionar en cálculo y diseño de elementos estructurales usando secciones mixtas. Se explica el cálculo y diseño de secciones mixtas, específicamente de entrepisos con losa colaborante sobre vigas construidas, columnas tubulares rellenas de hormigón, usando el método LRFD, ejemplificados en una estructura que fue calculada usando secciones de acero únicamente. Los resultados de los dos análisis se tabulan y se compara el peso de acero que se necesita cuando se calcula como elementos de acero solo, con el peso que se necesita cuando se calcula el acero trabajando en conjunto con el hormigón.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

CONTEXTO E OBJETIVO: Os tubos traqueais são dispositivos utilizados para manutenção da ventilação. A hiperinsuflação do balonete do tubo traqueal, causada pela difusão do óxido nitroso (N2O), pode determinar lesões traqueais, que se manifestam clinicamente como odinofagia, rouquidão e tosse. A lidocaína, quando injetada no balonete do tubo traqueal, difunde-se através de sua parede, determinando ação anestésica local na traquéia. O objetivo foi avaliar a efetividade e a segurança do balonete do tubo traqueal preenchido com ar comparado com o balonete preenchido com lidocaína, considerando os desfechos: sintomas cardiovasculatórios (HAS, taquicardia); odinofagia, tosse, rouquidão e tolerância ao tubo traqueal. TIPO DE ESTUDO E LOCAL: Estudo clínico prospectivo, realizado no Departamento de Anestesiologia da Faculdade de Medicina da Unesp, campus de Botucatu. MÉTODOS: A pressão do balonete do tubo traqueal foi medida, entre 50 pacientes, antes, 30, 60, 90 e 120 minutos após o início da inalação de N2O anestésico. As pacientes foram distribuídas aleatoriamente em dois grupos: Air, em que o balonete foi inflado com ar para obtenção de pressão de 20 cm H2O, e Lido, em que o balonete foi preenchido com lidocaína a 2% mais bicarbonato de sódio a 8,4% para obtenção da mesma pressão. O desconforto antes da extubação, e manifestações clínicas como dor de garganta, rouquidão e tosse foram registrados no momento da alta da unidade de cuidados pós-anestésicos, e dor de garganta e rouquidão foram avaliadas também 24 horas após a anestesia. RESULTADOS: Os valores da pressão no balonete em G2 foram significativamente menores do que os de Air em todos os tempos de estudo, a partir de 30 minutos (p < 0,001). A proporção de pacientes que reagiu ao tubo traqueal no momento da desintubação foi significantemente menor em Lido (p < 0,005). A incidência de odinofagia foi significantemente menor em Lido no primeiro dia de pós-operatório (p < 0,05). A incidência de tosse e rouquidão não diferiu entre os grupos. CONCLUSÕES: Durante ventilação artificial, empregando-se a mistura de oxigênio e N2O, a insuflação do balonete com lidocaína 2% alcalinizada impede que ocorra aumento significante da pressão no balonete e determina maior tolerância ao tubo traqueal e menor incidência de odinofagia no pós-operatório, podendo então ser considerada mais segura e com maior efetividade.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The subject of this study was to observe the rat subcutaneous connective tissue reaction to implanted dentin tubes filled with mineral trioxide aggregate, Portland cement or calcium hydroxide. The animals were sacrificed after 7 or 30 days and the undecalcified specimens were prepared for histological analysis with polarized light and Von Kossa technique for mineralized tissues. The results were similar for the studied materials. At the tube openings, there were Von Kossa-positive granules that were birefringent to polarized light. Next to these granulations, there was an irregular tissue like a bridge that was Von Kossa-positive. The dentin walls of the tubes exhibited in the tubules a structure highly birefringent to polarized light, usually like a layer and at different depths. The mechanism of action of the studied materials has some similarity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Upwardpropagation of a premixed flame in averticaltubefilled with a very leanmixture is simulated numerically using a single irreversible Arrhenius reaction model with infinitely high activation energy. In the absence of heat losses and preferential diffusion effects, a curved flame with stationary shape and velocity close to those of an open bubble ascending in the same tube is found for values of the fuel mass fraction above a certain minimum that increases with the radius of the tube, while the numerical computations cease to converge to a stationary solution below this minimum mass fraction. The vortical flow of the gas behind the flame and in its transport region is described for tubes of different radii. It is argued that this flow may become unstable when the fuel mass fraction is decreased, and that this instability, together with the flame stretch due to the strong curvature of the flame tip in narrow tubes, may be responsible for the minimum fuel mass fraction. Radiation losses and a Lewis number of the fuel slightly above unity decrease the final combustion temperature at the flame tip and increase the minimum fuel mass fraction, while a Lewis number slightly below unity has the opposite effect.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As part of a multi-university research program funded by NSF, a comprehensive experimental and analytical study of seismic behavior of hybrid fiber reinforced polymer (FRP)-concrete column is presented in this dissertation. Experimental investigation includes cyclic tests of six large-scale concrete-filled FRP tube (CFFT) and RC columns followed by monotonic flexural tests, a nondestructive evaluation of damage using ultrasonic pulse velocity in between the two test sets and tension tests of sixty-five FRP coupons. Two analytical models using ANSYS and OpenSees were developed and favorably verified against both cyclic and monotonic flexural tests. The results of the two methods were compared. A parametric study was also carried out to investigate the effect of three main parameters on primary seismic response measures. The responses of typical CFFT columns to three representative earthquake records were also investigated. The study shows that only specimens with carbon FRP cracked, whereas specimens with glass or hybrid FRP did not show any visible cracks throughout cyclic tests. Further monotonic flexural tests showed that carbon specimens both experienced flexural cracks in tension and crumpling in compression. Glass or hybrid specimens, on the other hand, all showed local buckling of FRP tubes. Compared with conventional RC columns, CFFT column possesses higher flexural strength and energy dissipation with an extended plastic hinge region. Among all CFFT columns, the hybrid lay-up demonstrated the highest flexural strength and initial stiffness, mainly because of its high reinforcement index and FRP/concrete stiffness ratio, respectively. Moreover, at the same drift ratio, the hybrid lay-up was also considered as the best in term of energy dissipation. Specimens with glassfiber tubes, on the other hand, exhibited the highest ductility due to better flexibility of glass FRP composites. Furthermore, ductility of CFFTs showed a strong correlation with the rupture strain of FRP. Parametric study further showed that different FRP architecture and rebar types may lead to different failure modes for CFFT columns. Transient analysis of strong ground motions showed that the column with off-axis nonlinear filament-wound glass FRP tube exhibited a superior seismic performance to all other CFFTs. Moreover, higher FRP reinforcement ratios may lead to a brittle system failure, while a well-engineered FRP reinforcement configuration may significantly enhance the seismic performance of CFFT columns.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The application of advanced materials in infrastructure has grown rapidly in recent years mainly because of their potential to ease the construction, extend the service life, and improve the performance of structures. Ultra-high performance concrete (UHPC) is one such material considered as a novel alternative to conventional concrete. The material microstructure in UHPC is optimized to significantly improve its material properties including compressive and tensile strength, modulus of elasticity, durability, and damage tolerance. Fiber-reinforced polymer (FRP) composite is another novel construction material with excellent properties such as high strength-to-weight and stiffness-to-weight ratios and good corrosion resistance. Considering the exceptional properties of UHPC and FRP, many advantages can result from the combined application of these two advanced materials, which is the subject of this research. The confinement behavior of UHPC was studied for the first time in this research. The stress-strain behavior of a series of UHPC-filled fiber-reinforced polymer (FRP) tubes with different fiber types and thicknesses were tested under uniaxial compression. The FRP confinement was shown to significantly enhance both the ultimate strength and strain of UHPC. It was also shown that existing confinement models are incapable of predicting the behavior of FRP-confined UHPC. Therefore, new stress-strain models for FRP-confined UHPC were developed through an analytical study. In the other part of this research, a novel steel-free UHPC-filled FRP tube (UHPCFFT) column system was developed and its cyclic behavior was studied. The proposed steel-free UHPCFFT column showed much higher strength and stiffness, with a reasonable ductility, as compared to its conventional reinforced concrete (RC) counterpart. Using the results of the first phase of column tests, a second series of UHPCFFT columns were made and studied under pseudo-static loading to study the effect of column parameters on the cyclic behavior of UHPCFFT columns. Strong correlations were noted between the initial stiffness and the stiffness index, and between the moment capacity and the reinforcement index. Finally, a thorough analytical study was carried out to investigate the seismic response of the proposed steel-free UHPCFFT columns, which showed their superior earthquake resistance, as compared to their RC counterparts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As part of a multi-university research program funded by NSF, a comprehensive experimental and analytical study of seismic behavior of hybrid fiber reinforced polymer (FRP)-concrete column is presented in this dissertation. Experimental investigation includes cyclic tests of six large-scale concrete-filled FRP tube (CFFT) and RC columns followed by monotonic flexural tests, a nondestructive evaluation of damage using ultrasonic pulse velocity in between the two test sets and tension tests of sixty-five FRP coupons. Two analytical models using ANSYS and OpenSees were developed and favorably verified against both cyclic and monotonic flexural tests. The results of the two methods were compared. A parametric study was also carried out to investigate the effect of three main parameters on primary seismic response measures. The responses of typical CFFT columns to three representative earthquake records were also investigated. The study shows that only specimens with carbon FRP cracked, whereas specimens with glass or hybrid FRP did not show any visible cracks throughout cyclic tests. Further monotonic flexural tests showed that carbon specimens both experienced flexural cracks in tension and crumpling in compression. Glass or hybrid specimens, on the other hand, all showed local buckling of FRP tubes. Compared with conventional RC columns, CFFT column possesses higher flexural strength and energy dissipation with an extended plastic hinge region. Among all CFFT columns, the hybrid lay-up demonstrated the highest flexural strength and initial stiffness, mainly because of its high reinforcement index and FRP/concrete stiffness ratio, respectively. Moreover, at the same drift ratio, the hybrid lay-up was also considered as the best in term of energy dissipation. Specimens with glassfiber tubes, on the other hand, exhibited the highest ductility due to better flexibility of glass FRP composites. Furthermore, ductility of CFFTs showed a strong correlation with the rupture strain of FRP. Parametric study further showed that different FRP architecture and rebar types may lead to different failure modes for CFFT columns. Transient analysis of strong ground motions showed that the column with off-axis nonlinear filament-wound glass FRP tube exhibited a superior seismic performance to all other CFFTs. Moreover, higher FRP reinforcement ratios may lead to a brittle system failure, while a well-engineered FRP reinforcement configuration may significantly enhance the seismic performance of CFFT columns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an experimental analysis of the confinement effects in steel-concrete composite columns regarding two parameters: concrete compressive strength and column slenderness. Sixteen concrete-filled steel tubular columns with circular cross section were tested under axial loading. The tested columns were filled by concrete with compressive strengths of 30, 60. 80, and 100 MPa, and had length/diameter ratios of 3, 5, 7, and 10. The experimental values of the columns` ultimate load were compared to the predictions of 4 code provisions: the Brazilian Code NBR 8800:2008, Eurocode 4 (EN 1994-1-1:2004), AINSI/AISC 360:2005, and CAN/CSA S16-01:2001. According to the results, the load capacity of the composite columns increased with increasing concrete strength and decreased with increasing length/diameter ratio. In general, the code provisions were highly accurate in the prediction of column capacity. Among them, the Brazilian Code was the most conservative, while Eurocode 4 presented the values closest to the experimental results. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A numerical study is reported to investigate both the First and the Second Law of Thermodynamics for thermally developing forced convection in a circular tube filled by a saturated porous medium, with uniform wall temperature, and with the effects of viscous dissipation included. A theoretical analysis is also presented to study the problem for the asymptotic region applying the perturbation solution of the Brinkman momentum equation reported by Hooman and Kani [1]. Expressions are reported for the temperature profile, the Nusselt number, the Bejan number, and the dimensionless entropy generation rate in the asymptotic region. Numerical results are found to be in good agreement with theoretical counterparts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. The objective of this study was to evaluate the sealing ability of AH Plus, Epiphany, Acroseal, Endofill, and Polifil after active lateral condensation technique, by using a bacterial test, during 64 days. Study design. One hundred bovine incisors were cleaned and shaped; then they were filled with the endodontic sealers and adapted into a microcentrifuge tube. The setup root/microcentrifuge tube was added to glass flasks containing Brain Heart Infusion broth. A culture of Enterococcus faecalis was inserted into the upper chamber of each assembly. Daily leakage was evaluated through the broth turbidity. Results. The results were submitted to statistical analysis (Kaplan-Meier method, Kruskal-Wallis and Dunn tests). Conclusions. AH Plus and Endofill had the worst sealing ability when compared with Polifil, which showed the least leakage. Acroseal and Epiphany showed a tendency toward having an intermediate behavior; however, there was no significant difference among Acroseal, Epiphany, and the other sealers. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 108: e56-e60)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To evaluate the diagnostic value and image quality of CT with filtered back projection (FBP) compared with adaptive statistical iterative reconstructed images (ASIR) in body stuffers with ingested cocaine-filled packets.Methods and Materials: Twenty-nine body stuffers (mean age 31.9 years, 3 women) suspected for ingestion of cocaine-filled packets underwent routine-dose 64-row multidetector CT with FBP (120kV, pitch 1.375, 100-300 mA and automatic tube current modulation (auto mA), rotation time 0.7sec, collimation 2.5mm), secondarily reconstructed with 30 % and 60 % ASIR. In 13 (44.83%) out of the body stuffers cocaine-filled packets were detected, confirmed by exact analysis of the faecal content including verification of the number (range 1-25). Three radiologists independently and blindly evaluated anonymous CT examinations (29 FBP-CT and 68 ASIR-CT) for the presence and number of cocaine-filled packets indicating observers' confidence, and graded them for diagnostic quality, image noise, and sharpness. Sensitivity, specificity, area under the receiver operating curve (ROC) Az and interobserver agreement between the 3 radiologists for FBP-CT and ASIR-CT were calculated.Results: The increase of the percentage of ASIR significantly diminished the objective image noise (p<0.001). Overall sensitivity and specificity for the detection of the cocaine-filled packets were 87.72% and 76.15%, respectively. The difference of ROC area Az between the different reconstruction techniques was significant (p= 0.0101), that is 0.938 for FBP-CT, 0.916 for 30 % ASIR-CT, and 0.894 for 60 % ASIR-CT.Conclusion: Despite the evident image noise reduction obtained by ASIR, the diagnostic value for detecting cocaine-filled packets decreases, depending on the applied ASIR percentage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: to describe and evaluate the acceptance of a low-cost chest tube insertion porcine model in a medical education project in the southwest of Paraná, Brazil. Methods: we developed a low-cost and low technology porcine model for teaching chest tube insertion and used it in a teaching project. Medical trainees - students and residents - received theoretical instructions about the procedure and performed thoracic drainage in this porcine model. After performing the procedure, the participants filled a feedback questionnaire about the proposed experimental model. This study presents the model and analyzes the questionnaire responses. Results: seventy-nine medical trainees used and evaluated the model. The anatomical correlation between the porcine model and human anatomy was considered high and averaged 8.1±1.0 among trainees. All study participants approved the low-cost porcine model for chest tube insertion. Conclusion: the presented low-cost porcine model for chest tube insertion training was feasible and had good acceptability among trainees. This model has potential use as a teaching tool in medical education.