939 resultados para Extreme value theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although stock prices fluctuate, the variations are relatively small and are frequently assumed to be normal distributed on a large time scale. But sometimes these fluctuations can become determinant, especially when unforeseen large drops in asset prices are observed that could result in huge losses or even in market crashes. The evidence shows that these events happen far more often than would be expected under the generalized assumption of normal distributed financial returns. Thus it is crucial to properly model the distribution tails so as to be able to predict the frequency and magnitude of extreme stock price returns. In this paper we follow the approach suggested by McNeil and Frey (2000) and combine the GARCH-type models with the Extreme Value Theory (EVT) to estimate the tails of three financial index returns DJI,FTSE 100 and NIKKEI 225 representing three important financial areas in the world. Our results indicate that EVT-based conditional quantile estimates are much more accurate than those from conventional AR-GARCH models assuming normal or Student’s t-distribution innovations when doing out-of-sample estimation (within the insample estimation, this is so for the right tail of the distribution of returns).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of the Extreme Value Theory (EVT) to model the probability of occurrence of extreme low Standardized Precipitation Index (SPI) values leads to an increase of the knowledge related to the occurrence of extreme dry months. This sort of analysis can be carried out by means of two approaches: the block maxima (BM; associated with the General Extreme Value distribution) and the peaks-over-threshold (POT; associated with the Generalized Pareto distribution). Each of these procedures has its own advantages and drawbacks. Thus, the main goal of this study is to compare the performance of BM and POT in characterizing the probability of occurrence of extreme dry SPI values obtained from the weather station of Ribeirão Preto-SP (1937-2012). According to the goodness-of-fit tests, both BM and POT can be used to assess the probability of occurrence of the aforementioned extreme dry SPI monthly values. However, the scalar measures of accuracy and the return level plots indicate that POT provides the best fit distribution. The study also indicated that the uncertainties in the parameters estimates of a probabilistic model should be taken into account when the probability associated with a severe/extreme dry event is under analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper compares a number of different extreme value models for determining the value at risk (VaR) of three LIFFE futures contracts. A semi-nonparametric approach is also proposed, where the tail events are modeled using the generalised Pareto distribution, and normal market conditions are captured by the empirical distribution function. The value at risk estimates from this approach are compared with those of standard nonparametric extreme value tail estimation approaches, with a small sample bias-corrected extreme value approach, and with those calculated from bootstrapping the unconditional density and bootstrapping from a GARCH(1,1) model. The results indicate that, for a holdout sample, the proposed semi-nonparametric extreme value approach yields superior results to other methods, but the small sample tail index technique is also accurate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the frequency of extreme events for three LIFFE futures contracts for the calculation of minimum capital risk requirements (MCRRs). We propose a semiparametric approach where the tails are modelled by the Generalized Pareto Distribution and smaller risks are captured by the empirical distribution function. We compare the capital requirements form this approach with those calculated from the unconditional density and from a conditional density - a GARCH(1,1) model. Our primary finding is that both in-sample and for a hold-out sample, our extreme value approach yields superior results than either of the other two models which do not explicitly model the tails of the return distribution. Since the use of these internal models will be permitted under the EC-CAD II, they could be widely adopted in the near future for determining capital adequacies. Hence, close scrutiny of competing models is required to avoid a potentially costly misallocation capital resources while at the same time ensuring the safety of the financial system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent deregulation in electricity markets worldwide has heightened the importance of risk management in energy markets. Assessing Value-at-Risk (VaR) in electricity markets is arguably more difficult than in traditional financial markets because the distinctive features of the former result in a highly unusual distribution of returns-electricity returns are highly volatile, display seasonalities in both their mean and volatility, exhibit leverage effects and clustering in volatility, and feature extreme levels of skewness and kurtosis. With electricity applications in mind, this paper proposes a model that accommodates autoregression and weekly seasonals in both the conditional mean and conditional volatility of returns, as well as leverage effects via an EGARCH specification. In addition, extreme value theory (EVT) is adopted to explicitly model the tails of the return distribution. Compared to a number of other parametric models and simple historical simulation based approaches, the proposed EVT-based model performs well in forecasting out-of-sample VaR. In addition, statistical tests show that the proposed model provides appropriate interval coverage in both unconditional and, more importantly, conditional contexts. Overall, the results are encouraging in suggesting that the proposed EVT-based model is a useful technique in forecasting VaR in electricity markets. (c) 2005 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extreme stock price movements are of great concern to both investors and the entire economy. For investors, a single negative return, or a combination of several smaller returns, can possible wipe out so much capital that the firm or portfolio becomes illiquid or insolvent. If enough investors experience this loss, it could shock the entire economy. An example of such a case is the stock market crash of 1987. Furthermore, there has been a lot of recent interest regarding the increasing volatility of stock prices. ^ This study presents an analysis of extreme stock price movements. The data utilized was the daily returns for the Standard and Poor's 500 index from January 3, 1978 to May 31, 2001. Research questions were analyzed using the statistical models provided by extreme value theory. One of the difficulties in examining stock price data is that there is no consensus regarding the correct shape of the distribution function generating the data. An advantage with extreme value theory is that no detailed knowledge of this distribution function is required to apply the asymptotic theory. We focus on the tail of the distribution. ^ Extreme value theory allows us to estimate a tail index, which we use to derive bounds on the returns for very low probabilities on an excess. Such information is useful in evaluating the volatility of stock prices. There are three possible limit laws for the maximum: Gumbel (thick-tailed), Fréchet (thin-tailed) or Weibull (no tail). Results indicated that extreme returns during the time period studied follow a Fréchet distribution. Thus, this study finds that extreme value analysis is a valuable tool for examining stock price movements and can be more efficient than the usual variance in measuring risk. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the classical theorems of extreme value theory the limits of suitably rescaled maxima of sequences of independent, identically distributed random variables are studied. The vast majority of the literature on the subject deals with affine normalization. We argue that more general normalizations are natural from a mathematical and physical point of view and work them out. The problem is approached using the language of renormalization-group transformations in the space of probability densities. The limit distributions are fixed points of the transformation and the study of its differential around them allows a local analysis of the domains of attraction and the computation of finite-size corrections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we perform an analytical and numerical study of Extreme Value distributions in discrete dynamical systems. In this setting, recent works have shown how to get a statistics of extremes in agreement with the classical Extreme Value Theory. We pursue these investigations by giving analytical expressions of Extreme Value distribution parameters for maps that have an absolutely continuous invariant measure. We compare these analytical results with numerical experiments in which we study the convergence to limiting distributions using the so called block-maxima approach, pointing out in which cases we obtain robust estimation of parameters. In regular maps for which mixing properties do not hold, we show that the fitting procedure to the classical Extreme Value Distribution fails, as expected. However, we obtain an empirical distribution that can be explained starting from a different observable function for which Nicolis et al. (Phys. Rev. Lett. 97(21): 210602, 2006) have found analytical results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Testing weather or not data belongs could been generated by a family of extreme value copulas is difficult. We generalize a test and we prove that it can be applied whatever the alternative hypothesis. We also study the effect of using different extreme value copulas in the context of risk estimation. To measure the risk we use a quantile. Our results have motivated by a bivariate sample of losses from a real database of auto insurance claims. Methods are implemented in R.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a new kernel estimation of the cumulative distribution function based on transformation and on bias reducing techniques. We derive the optimal bandwidth that minimises the asymptotic integrated mean squared error. The simulation results show that our proposed kernel estimation improves alternative approaches when the variable has an extreme value distribution with heavy tail and the sample size is small.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statistical approaches to study extreme events require, by definition, long time series of data. In many scientific disciplines, these series are often subject to variations at different temporal scales that affect the frequency and intensity of their extremes. Therefore, the assumption of stationarity is violated and alternative methods to conventional stationary extreme value analysis (EVA) must be adopted. Using the example of environmental variables subject to climate change, in this study we introduce the transformed-stationary (TS) methodology for non-stationary EVA. This approach consists of (i) transforming a non-stationary time series into a stationary one, to which the stationary EVA theory can be applied, and (ii) reverse transforming the result into a non-stationary extreme value distribution. As a transformation, we propose and discuss a simple time-varying normalization of the signal and show that it enables a comprehensive formulation of non-stationary generalized extreme value (GEV) and generalized Pareto distribution (GPD) models with a constant shape parameter. A validation of the methodology is carried out on time series of significant wave height, residual water level, and river discharge, which show varying degrees of long-term and seasonal variability. The results from the proposed approach are comparable with the results from (a) a stationary EVA on quasi-stationary slices of non-stationary series and (b) the established method for non-stationary EVA. However, the proposed technique comes with advantages in both cases. For example, in contrast to (a), the proposed technique uses the whole time horizon of the series for the estimation of the extremes, allowing for a more accurate estimation of large return levels. Furthermore, with respect to (b), it decouples the detection of non-stationary patterns from the fitting of the extreme value distribution. As a result, the steps of the analysis are simplified and intermediate diagnostics are possible. In particular, the transformation can be carried out by means of simple statistical techniques such as low-pass filters based on the running mean and the standard deviation, and the fitting procedure is a stationary one with a few degrees of freedom and is easy to implement and control. An open-source MAT-LAB toolbox has been developed to cover this methodology, which is available at https://github.com/menta78/tsEva/(Mentaschi et al., 2016).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extreme value models are widely used in different areas. The Birnbaum–Saunders distribution is receiving considerable attention due to its physical arguments and its good properties. We propose a methodology based on extreme value Birnbaum–Saunders regression models, which includes model formulation, estimation, inference and checking. We further conduct a simulation study for evaluating its performance. A statistical analysis with real-world extreme value environmental data using the methodology is provided as illustration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we perform an analytical and numerical study of Extreme Value distributions in discrete dynamical systems that have a singular measure. Using the block maxima approach described in Faranda et al. [2011] we show that, numerically, the Extreme Value distribution for these maps can be associated to the Generalised Extreme Value family where the parameters scale with the information dimension. The numerical analysis are performed on a few low dimensional maps. For the middle third Cantor set and the Sierpinskij triangle obtained using Iterated Function Systems, experimental parameters show a very good agreement with the theoretical values. For strange attractors like Lozi and H\`enon maps a slower convergence to the Generalised Extreme Value distribution is observed. Even in presence of large statistics the observed convergence is slower if compared with the maps which have an absolute continuous invariant measure. Nevertheless and within the uncertainty computed range, the results are in good agreement with the theoretical estimates.