899 resultados para External trunk asymmetry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The value of the lateral bending test is important in the assessment of spinal curve mobility and prediction of surgical outcome in the treatment of adolescent idiopathic scoliosis (AIS). However, radiographic bending tests are unable to assess the reducibility of trunk asymmetry. This study aims to exploit surface topography measurement in order to evaluate the changes in shape of the trunk (a) between bending and neutral standing positions, and (b) between standing pre- and post-operative visits, in a cohort of adolescents with AIS having undergone surgical correction; and to correlate the differences measured in cases (a) and (b). Our cohort includes 13 patients with right thoracic AIS. Each patient had their 3D trunk surface digitized with a multi-head InSpeck system in standing posture (at the pre-op and post-op visits) and in maximum voluntary right and left bending (at the pre-op visit). We developed a novel trunk shape analysis method which produces a set of inclined trunk cross-sections allowing comparison between different postures. Two asymmetry indices, trunk rotation (TR) and back surface rotation (BSR), were computed in all cases and a statistical analysis was performed. Our correlation study (Pearson test) showed fair correlations in most cases between the changes in side-bending and those post-surgery, with the strongest relationship (p-value < 0.01) when combining the TR measurements from both bendings. These results provide evidence that the bending test can be used to assess trunk asymmetry reducibility. The proposed approach could provide a non-invasive trunk asymmetry reducibility test for routine clinical use in AIS surgery planning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Persistence of external trunk asymmetry after scoliosis surgical treatment is frequent and difficult to predict by clinicians. This is a significant problem considering that correction of the apparent deformity is a major factor of satisfaction for the patients. A simulation of the correction on the external appearance would allow the clinician to illustrate to the patient the potential result of the surgery and would help in deciding on a surgical strategy that could most improve his/her appearance. We describe a method to predict the scoliotic trunk shape after a spine surgical intervention. The capability of our method was evaluated using real data of scoliotic patients. Results of the qualitative evaluation were very promising and a quantitative evaluation based on the comparison of the simulated and the actual postoperative trunk surface showed an adequate accuracy for clinical assessment. The required short simulation time also makes our approach an eligible candidate for a clinical environment demanding interactive simulations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper provides an overview of work done in recent years by our research group to fuse multimodal images of the trunk of patients with Adolescent Idiopathic Scoliosis (AIS) treated at Sainte-Justine University Hospital Center (CHU). We first describe our surface acquisition system and introduce a set of clinical measurements (indices) based on the trunk's external shape, to quantify its degree of asymmetry. We then describe our 3D reconstruction system of the spine and rib cage from biplanar radiographs and present our methodology for multimodal fusion of MRI, X-ray and external surface images of the trunk We finally present a physical model of the human trunk including bone and soft tissue for the simulation of the surgical outcome on the external trunk shape in AIS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Study Design. A comparative study of trunk and hip extensor muscle recruitment patterns in 2 subject groups. Objective. To examine for changes in recruitment of the hip and back extensor muscles during low level isometric trunk rotation efforts in chronic low back pain (CLBP) subjects by comparison with matched asymptomatic control subjects. Summary of Background Data. Anatomic and biomechanical models have provided evidence that muscles attaching to the thoracolumbar fascia (TLF) are important for providing stabilization to the lumbopelvic region during trunk rotation. This has guided rehabilitation programs. The muscles that link diagonally to the posterior layer of the TLF have not previously been examined individually and compared during low-level trunk rotation efforts in CLBP patients and matched controls. Methods. Thirty CLBP patients and 30 matched controls were assessed using surface electromyography (EMG) as they performed low-level isometric rotation efforts while standing upright. Muscles studied included latissimus dorsi, erector spinae, upper and lower gluteus maximus, and biceps femoris. Subjects performed the rotation exertion with various levels of external trunk support, related to different functional tasks. Results. EMG results demonstrated that subjects with CLBP had significantly higher levels of recruitment for the lower and upper gluteus maximus (P < 0.05), hamstrings (P < 0.05), and erector spinae muscles (P < 0.05) during rotation to the left compared with the control subjects. Conclusion. This study provided evidence of increased muscle recruitment in CLBP patients when performing a standardized trunk rotation task. These results may have implications for the design of therapeutic exercise programs for CLBP patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective Recently, Taylor et al. reported that use of the BrainLAB m3 microMLC, for stereotactic radiosurgery, results in a decreased out-of-field dose in the direction of leaf-motion compared to the outof- field dose measured in the direction orthogonal to leaf-motion [1]. It was recommended that, where possible, patients should be treated with their superior–inferior axes aligned with the microMLCs leafmotion direction, to minimise out-of-field doses [1]. This study aimed, therefore, to examine the causes of this asymmetry in outof- field dose and, in particular, to establish that a similar recommendation need not be made for radiotherapy treatments delivered by linear accelerators without external micro-collimation systems. Methods Monte Carlo simulations were used to study out-of-field dose from different linear accelerators (the Varian Clinacs 21iX and 600C and the Elekta Precise) with and without internal MLCs and external microMLCs [2]. Results Simulation results for the Varian Clinac 600C linear accelerator with BrainLAB m3 microMLC confirm Taylor et als [1] published experimental data. The out-of-field dose in the leaf motion direction is deposited by lower energy (more obliquely scattered) photons than the out-of-field dose in the orthogonal direction. Linear accelerators without microMLCs produce no asymmetry in out-offield dose. Conclusions The asymmetry in out-of-field dose previously measured by Taylor et al. [1] results from the shielding characteristics of the BrainLAB m3 microMLC device and is not produced by the linear accelerator to which it is attached.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Adolescent idiopathic scoliosis (AIS) is a deformity of the spine manifested by asymmetry and deformities of the external surface of the trunk. Classification of scoliosis deformities according to curve type is used to plan management of scoliosis patients. Currently, scoliosis curve type is determined based on X-ray exam. However, cumulative exposure to X-rays radiation significantly increases the risk for certain cancer. In this paper, we propose a robust system that can classify the scoliosis curve type from non invasive acquisition of 3D trunk surface of the patients. The 3D image of the trunk is divided into patches and local geometric descriptors characterizing the surface of the back are computed from each patch and forming the features. We perform the reduction of the dimensionality by using Principal Component Analysis and 53 components were retained. In this work a multi-class classifier is built with Least-squares support vector machine (LS-SVM) which is a kernel classifier. For this study, a new kernel was designed in order to achieve a robust classifier in comparison with polynomial and Gaussian kernel. The proposed system was validated using data of 103 patients with different scoliosis curve types diagnosed and classified by an orthopedic surgeon from the X-ray images. The average rate of successful classification was 93.3% with a better rate of prediction for the major thoracic and lumbar/thoracolumbar types.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During voluntary arm movements, the medial back muscles are differentially active. It is not known whether differential activity also occurs when the trunk is perturbed unpredictably, when the earliest responses are initiated by short-latency spinal mechanisms rather than voluntary commands. To assess this, in unpredictable and self-initiated conditions, a weight was dropped into a bucket that was held by the standing subject (n = 7). EMG activity was recorded from the deep (Deep MF), superficial (Sup MF) and lateral (Lat MF) lumbar multifidus, the thoracic erector spinae (ES) and the biceps brachii. With unpredictable perturbations, EMG activity was first noted in the biceps brachii, then the thoracic ES, followed synchronously in the components of the multifidus. During self-initiated perturbations, background EMG in the Deep MF increased two- to threefold, and the latency of the loading response decreased in six out of the seven subjects. In Sup MF and Lat MF, this increase in background EMG was not observed, and the latency of the loading response was increased. Short-latency reflex mechanisms do not cause differential action of the medial back muscles when the trunk is loaded. However, during voluntary tasks the central nervous system exerts a 'tuned response', which involves discrete activity in the deep and superficial components of the medial lumbar muscles in a way that varies according to the biomechanical action of the muscle component.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, using self-consistent tight-binding calculations. for the first time, we show that a direct to indirect band gap transition is possible in an armchair graphene nanoribbon by the application of an external bias along the width of the ribbon, opening up the possibility of new device applications. With the help of the Dirac equation, we qualitatively explain this band gap transition using the asymmetry in the spatial distribution of the perturbation potential produced inside the nanoribbon by the external bias. This is followed by the verification of the band gap trends with a numerical technique using Magnus expansion of matrix exponentials. Finally, we show that the carrier effective masses possess tunable sharp characters in the vicinity of the band gap transition points.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The plane of division of granule neuron progenitors (GNPs) was analysed with respect to the pial surface in P0 to P14 cerebellum and the results showed that there was a significant bias towards the plane of cell division being parallel to pial surface across this developmental window. In addition, the distribution of beta-Catenin in anaphase cells was analysed, which showed that there was a significant asymmetry in the distribution of beta-Catenin in dividing GNPs. Further, inhibition of Sonic Hedgehog (Shh) signalling had an effect on plane of cell division. Asymmetric distribution of beta-Catenin was shown to occur towards the source of a localized extracellular cue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a method for analyzing scoliosis trunk deformities using Independent Component Analysis (ICA). Our hypothesis is that ICA can capture the scoliosis deformities visible on the trunk. Unlike Principal Component Analysis (PCA), ICA gives local shape variation and assumes that the data distribution is not normal. 3D torso images of 56 subjects including 28 patients with adolescent idiopathic scoliosis and 28 healthy subjects are analyzed using ICA. First, we remark that the independent components capture the local scoliosis deformities as the shoulder variation, the scapula asymmetry and the waist deformation. Second, we note that the different scoliosis curve types are characterized by different combinations of specific independent components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the major concerns of scoliotic patients undergoing spinal correction surgery is the trunk's external appearance after the surgery. This paper presents a novel incremental approach for simulating postoperative trunk shape in scoliosis surgery. Preoperative and postoperative trunk shapes data were obtained using three-dimensional medical imaging techniques for seven patients with adolescent idiopathic scoliosis. Results of qualitative and quantitative evaluations, based on the comparison of the simulated and actual postoperative trunk surfaces, showed an adequate accuracy of the method. Our approach provides a candidate simulation tool to be used in a clinical environment for the surgery planning process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Study Design Cross-sectional descriptive study. Objectives To characterize breast asymmetry (BA), as defined by breast volume difference, in girls with significant adolescent idiopathic scoliosis (AIS), using magnetic resonance imaging (MRI). Summary and Background BA is a frequent concern among girls with AIS. It is commonly believed that this results from chest wall deformity. Although many women exhibit physiological BA, the prevalence is not known in adolescents and it remains unclear if it is more frequent in AIS. Breasts vary in shape and size and many ways of measuring them have been explored. MRI shows the highest precision at defining breast tissue. Methods Thirty patients were enrolled on the basis of their thoracic curvature, skeletal and breast maturity, without regard to their perception on their BA. MRI acquisitions were performed in prone with a 1.5-Tesla system using a 16-channel breast coil. Segmentation was achieved using the ITK-SNAP 2.4.0 software and subsequently manually refined. Results The mean left breast volume (528.32 ± 205.96 cc) was greater compared with the mean right breast volume (495.18 ± 170.16 cc) with a significant difference between them. The mean BA was found to be 8.32% ± 6.43% (p < .0001). A weak positive correlation was observed between BA and thoracic Cobb angle (0.177, p = .349) as well as thoracic gibbosity angle (0.289, p = .122). The left breast was consistently larger in 65.5% of the patients. Twenty patients (66.7%) displayed BA ≥5%. Conclusions We have described BA in patients with significant AIS using MRI. This method is feasible, objective, and very precise. The majority of patients had a larger left breast, which could compound the apparent BA secondary to trunk rotation. In many cases, BA is present independently of thoracic deformity. This knowledge will assist in counseling AIS patients in regards to their concerns with BA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Hand-held flexible poles which are brought into oscillation to cause alternating forces on trunk, are advocated as training devices that are supposed to solicit increased levels of stabilizing trunk muscle activity. The aim of this study was to verify this claim by comparing electromyographic (EMG) activity of trunk muscles during exercises performed with a flexible pole and a rigid pole.Methods: Twelve healthy females performed three different exercises with flexible and rigid poles. EMG activity of iliocostalis lumborum (IL), multifidus (MU), rectus abdominis (RA), external oblique (EO) and internal oblique (IO), and was continuously measured. The EMG signals were analyzed in time domain by calculation of the Root Mean Square (RMS) amplitudes over 250 ms windows. The mean RMS-values over time were normalized by the maximum RMS obtained for each muscle.Results: The IO showed a 72% greater EMG activity during the exercises performed with the flexible pole than with the rigid pole (p = 0.035). In exercises performed in standing, the IO was significantly more active than when sitting (p = 0.006).Conclusion: As intended, the cyclic forces induced by the oscillating pole did increase trunk muscle activation. However, the effect was limited and significant for the IO muscle only.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The identification of tree species is a key step for sustainable management plans of forest resources, as well as for several other applications that are based on such surveys. However, the present available techniques are dependent on the presence of tree structures, such as flowers, fruits, and leaves, limiting the identification process to certain periods of the year Therefore, this article introduces a study on the application of statistical parameters for texture classification of tree trunk images. For that, 540 samples from five Brazilian native deciduous species were acquired and measures of entropy, uniformity, smoothness, asymmetry (third moment), mean, and standard deviation were obtained from the presented textures. Using a decision tree, a biometric species identification system was constructed and resulted to a 0.84 average precision rate for species classification with 0.83accuracy and 0.79 agreement. Thus, it can be considered that the use of texture presented in trunk images can represent an important advance in tree identification, since the limitations of the current techniques can be overcome.