932 resultados para ExternaI Time-varying Reference Consumption Level
Resumo:
In da Costa et al. (2006) we have shown how a same pricing kernel can account for the excess returns of the S&:P500 over the US short term bond and of the uncovered over the covered trading of foreign government bonds. In this paper we estimate and test the overidentifying restrictiom; of Euler equations associated with "ix different versions of the Consumption Capital Asset Pricing I\Iodel. Our main finding is that the same (however often unreasonable) values for the parameters are estimated for ali models in both nmrkets. In most cases, the rejections or otherwise of overidentifying restrictions occurs for the two markets, suggesting that success and failure stories for the equity premium repeat themselves in foreign exchange markets. Our results corroborate the findings in da Costa et al. (2006) that indicate a strong similarity between the behavior of excess returns in the two markets when modeled as risk premiums, providing empirical grounds to believe that the proposed preference-based solutions to puzzles in domestic financiaI markets can certainly shed light on the Forward Premium Puzzle.
Resumo:
The current practices in the consumption metering by electricity utilities is currently largely based on monthly consumption reading. The consumption metering device is always calculating the cumulative consumption. Then, it is possible to calculate the difference between the actual and the previous consumption evaluation in order to estimate the monthly consumption. The power systems planning needs in many aspects to handle consumption data obtained for shorter periods, namely in the Demand Response programs planning. The work presented in this paper is based on the application of typical consumption profiles that are previously defined for a certain power system area. Such profiles are then used in order to estimate the 15 minutes consumption for a certain consumer or consumer type.
Resumo:
This paper analyzes empirically the volatility of consumption-based stochastic discount factors as a measure of implicit economic fears by studying its relationship with future economic and stock market cycles. Time-varying economic fears seem to be well captured by the volatility of stochastic discount factors. In particular, the volatility of recursive utility-based stochastic discount factor with contemporaneous growth explains between 9 and 34 percent of future changes in industrial production at short and long horizons respectively. They also explain ex-ante uncertainty and risk aversion. However, future stock market cycles are better explained by a similar stochastic discount factor with long-run consumption growth. This specification of the stochastic discount factor presents higher volatility and lower pricing errors than the specification with contemporaneous consumption growth.
Resumo:
We study an intertemporal asset pricing model in which a representative consumer maximizes expected utility derived from both the ratio of his consumption to some reference level and this level itself. If the reference consumption level is assumed to be determined by past consumption levels, the model generalizes the usual habit formation specifications. When the reference level growth rate is made dependent on the market portfolio return and on past consumption growth, the model mixes a consumption CAPM with habit formation together with the CAPM. It therefore provides, in an expected utility framework, a generalization of the non-expected recursive utility model of Epstein and Zin (1989). When we estimate this specification with aggregate per capita consumption, we obtain economically plausible values of the preference parameters, in contrast with the habit formation or the Epstein-Zin cases taken separately. All tests performed with various preference specifications confirm that the reference level enters significantly in the pricing kernel.
Resumo:
Using a numerical implementation of the Cowley and Lockwood (1992) model of flow excitation in the magnetosphere–ionosphere (MI) system, we show that both an expanding (on a _12-min timescale) and a quasiinstantaneous response in ionospheric convection to the onset of magnetopause reconnection can be accommodated by the Cowley–Lockwood conceptual framework. This model has a key feature of time dependence, necessarily considering the history of the coupled MI system. We show that a residual flow, driven by prior magnetopause reconnection, can produce a quasi-instantaneous global ionospheric convection response; perturbations from an equilibrium state may also be present from tail reconnection, which will superpose constructively to give a similar effect. On the other hand, when the MI system is relatively free of pre-existing flow, we can most clearly see the expanding nature of the response. As the open-closed field line boundary will frequently be in motion from such prior reconnection (both at the dayside magnetopause and in the cross-tail current sheet), it is expected that there will usually be some level of combined response to dayside reconnection.
Resumo:
This paper investigates economic growth’s pattern of variation across and within countries using a Time-Varying Transition Matrix Markov-Switching Approach. The model developed follows the approach of Pritchett (2003) and explains the dynamics of growth based on a collection of different states, each of which has a sub-model and a growth pattern, by which countries oscillate over time. The transition matrix among the different states varies over time, depending on the conditioning variables of each country, with a linear dynamic for each state. We develop a generalization of the Diebold’s EM Algorithm and estimate an example model in a panel with a transition matrix conditioned on the quality of the institutions and the level of investment. We found three states of growth: stable growth, miraculous growth, and stagnation. The results show that the quality of the institutions is an important determinant of long-term growth, whereas the level of investment has varying roles in that it contributes positively in countries with high-quality institutions but is of little relevance in countries with medium- or poor-quality institutions.
Resumo:
Background: Several models have been designed to predict survival of patients with heart failure. These, while available and widely used for both stratifying and deciding upon different treatment options on the individual level, have several limitations. Specifically, some clinical variables that may influence prognosis may have an influence that change over time. Statistical models that include such characteristic may help in evaluating prognosis. The aim of the present study was to analyze and quantify the impact of modeling heart failure survival allowing for covariates with time-varying effects known to be independent predictors of overall mortality in this clinical setting. Methodology: Survival data from an inception cohort of five hundred patients diagnosed with heart failure functional class III and IV between 2002 and 2004 and followed-up to 2006 were analyzed by using the proportional hazards Cox model and variations of the Cox's model and also of the Aalen's additive model. Principal Findings: One-hundred and eighty eight (188) patients died during follow-up. For patients under study, age, serum sodium, hemoglobin, serum creatinine, and left ventricular ejection fraction were significantly associated with mortality. Evidence of time-varying effect was suggested for the last three. Both high hemoglobin and high LV ejection fraction were associated with a reduced risk of dying with a stronger initial effect. High creatinine, associated with an increased risk of dying, also presented an initial stronger effect. The impact of age and sodium were constant over time. Conclusions: The current study points to the importance of evaluating covariates with time-varying effects in heart failure models. The analysis performed suggests that variations of Cox and Aalen models constitute a valuable tool for identifying these variables. The implementation of covariates with time-varying effects into heart failure prognostication models may reduce bias and increase the specificity of such models.
Resumo:
Road pricing has emerged as an effective means of managing road traffic demand while simultaneously raising additional revenues to transportation agencies. Research on the factors that govern travel decisions has shown that user preferences may be a function of the demographic characteristics of the individuals and the perceived trip attributes. However, it is not clear what are the actual trip attributes considered in the travel decision- making process, how these attributes are perceived by travelers, and how the set of trip attributes change as a function of the time of the day or from day to day. In this study, operational Intelligent Transportation Systems (ITS) archives are mined and the aggregated preferences for a priced system are extracted at a fine time aggregation level for an extended number of days. The resulting information is related to corresponding time-varying trip attributes such as travel time, travel time reliability, charged toll, and other parameters. The time-varying user preferences and trip attributes are linked together by means of a binary choice model (Logit) with a linear utility function on trip attributes. The trip attributes weights in the utility function are then dynamically estimated for each time of day by means of an adaptive, limited-memory discrete Kalman filter (ALMF). The relationship between traveler choices and travel time is assessed using different rules to capture the logic that best represents the traveler perception and the effect of the real-time information on the observed preferences. The impact of travel time reliability on traveler choices is investigated considering its multiple definitions. It can be concluded based on the results that using the ALMF algorithm allows a robust estimation of time-varying weights in the utility function at fine time aggregation levels. The high correlations among the trip attributes severely constrain the simultaneous estimation of their weights in the utility function. Despite the data limitations, it is found that, the ALMF algorithm can provide stable estimates of the choice parameters for some periods of the day. Finally, it is found that the daily variation of the user sensitivities for different periods of the day resembles a well-defined normal distribution.
Resumo:
This paper studies semistability of the recursive Kalman filter in the context of linear time-varying (LTV), possibly nondetectable systems with incorrect noise information. Semistability is a key property, as it ensures that the actual estimation error does not diverge exponentially. We explore structural properties of the filter to obtain a necessary and sufficient condition for the filter to be semistable. The condition does not involve limiting gains nor the solution of Riccati equations, as they can be difficult to obtain numerically and may not exist. We also compare semistability with the notions of stability and stability w.r.t. the initial error covariance, and we show that semistability in a sense makes no distinction between persistent and nonpersistent incorrect noise models, as opposed to stability. In the linear time invariant scenario we obtain algebraic, easy to test conditions for semistability and stability, which complement results available in the context of detectable systems. Illustrative examples are included.
Resumo:
This work summarizes some results about static state feedback linearization for time-varying systems. Three different necessary and sufficient conditions are stated in this paper. The first condition is the one by [Sluis, W. M. (1993). A necessary condition for dynamic feedback linearization. Systems & Control Letters, 21, 277-283]. The second and the third are the generalizations of known results due respectively to [Aranda-Bricaire, E., Moog, C. H., Pomet, J. B. (1995). A linear algebraic framework for dynamic feedback linearization. IEEE Transactions on Automatic Control, 40, 127-132] and to [Jakubczyk, B., Respondek, W. (1980). On linearization of control systems. Bulletin del` Academie Polonaise des Sciences. Serie des Sciences Mathematiques, 28, 517-522]. The proofs of the second and third conditions are established by showing the equivalence between these three conditions. The results are re-stated in the infinite dimensional geometric approach of [Fliess, M., Levine J., Martin, P., Rouchon, P. (1999). A Lie-Backlund approach to equivalence and flatness of nonlinear systems. IEEE Transactions on Automatic Control, 44(5), 922-937]. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This work considers a nonlinear time-varying system described by a state representation, with input u and state x. A given set of functions v, which is not necessarily the original input u of the system, is the (new) input candidate. The main result provides necessary and sufficient conditions for the existence of a local classical state space representation with input v. These conditions rely on integrability tests that are based on a derived flag. As a byproduct, one obtains a sufficient condition of differential flatness of nonlinear systems. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
When linear equality constraints are invariant through time they can be incorporated into estimation by restricted least squares. If, however, the constraints are time-varying, this standard methodology cannot be applied. In this paper we show how to incorporate linear time-varying constraints into the estimation of econometric models. The method involves the augmentation of the observation equation of a state-space model prior to estimation by the Kalman filter. Numerical optimisation routines are used for the estimation. A simple example drawn from demand analysis is used to illustrate the method and its application.
Resumo:
Applied econometricians often fail to impose economic regularity constraints in the exact form economic theory prescribes. We show how the Singular Value Decomposition (SVD) Theorem and Markov Chain Monte Carlo (MCMC) methods can be used to rigorously impose time- and firm-varying equality and inequality constraints. To illustrate the technique we estimate a system of translog input demand functions subject to all the constraints implied by economic theory, including observation-varying symmetry and concavity constraints. Results are presented in the form of characteristics of the estimated posterior distributions of functions of the parameters. Copyright (C) 2001 John Wiley Sons, Ltd.
Resumo:
Forecasting category or industry sales is a vital component of a company's planning and control activities. Sales for most mature durable product categories are dominated by replacement purchases. Previous sales models which explicitly incorporate a component of sales due to replacement assume there is an age distribution for replacements of existing units which remains constant over time. However, there is evidence that changes in factors such as product reliability/durability, price, repair costs, scrapping values, styling and economic conditions will result in changes in the mean replacement age of units. This paper develops a model for such time-varying replacement behaviour and empirically tests it in the Australian automotive industry. Both longitudinal census data and the empirical analysis of the replacement sales model confirm that there has been a substantial increase in the average aggregate replacement age for motor vehicles over the past 20 years. Further, much of this variation could be explained by real price increases and a linear temporal trend. Consequently, the time-varying model significantly outperformed previous models both in terms of fitting and forecasting the sales data. Copyright (C) 2001 John Wiley & Sons, Ltd.