957 resultados para Exponential Sum
Resumo:
The Minimum Description Length (MDL) principle is a general, well-founded theoretical formalization of statistical modeling. The most important notion of MDL is the stochastic complexity, which can be interpreted as the shortest description length of a given sample of data relative to a model class. The exact definition of the stochastic complexity has gone through several evolutionary steps. The latest instantation is based on the so-called Normalized Maximum Likelihood (NML) distribution which has been shown to possess several important theoretical properties. However, the applications of this modern version of the MDL have been quite rare because of computational complexity problems, i.e., for discrete data, the definition of NML involves an exponential sum, and in the case of continuous data, a multi-dimensional integral usually infeasible to evaluate or even approximate accurately. In this doctoral dissertation, we present mathematical techniques for computing NML efficiently for some model families involving discrete data. We also show how these techniques can be used to apply MDL in two practical applications: histogram density estimation and clustering of multi-dimensional data.
Resumo:
Following the idea of Xing et al., we investigate a general method for constructing families of pseudorandom sequences with low correlation and large linear complexity from elliptic curves over finite fields in this correspondence. With the help of the tool of exponential sums on elliptic curves, we study their periods, linear complexities, linear complexity profiles, distributions of r-patterns, periodic correlation, partial period distributions, and aperiodic correlation in detail. The results show that they have nice randomness.
Resumo:
Recently Garashuk and Lisonek evaluated Kloosterman sums K (a) modulo 4 over a finite field F3m in the case of even K (a). They posed it as an open problem to characterize elements a in F3m for which K (a) ≡ 1 (mod4) and K (a) ≡ 3 (mod4). In this paper, we will give an answer to this problem. The result allows us to count the number of elements a in F3m belonging to each of these two classes.
Resumo:
The techniques of algebraic geometry have been widely and successfully applied to the study of linear codes over finite fields since the early 1980's. Recently, there has been an increased interest in the study of linear codes over finite rings. In this thesis, we combine these two approaches to coding theory by introducing and studying algebraic geometric codes over rings.
Resumo:
Passive air samplers (PAS) consisting of polyurethane foam (PUF) disks were deployed at 6 outdoor air monitoring stations in different land use categories (commercial, industrial, residential and semi-rural) to assess the spatial distribution of polybrominated diphenyl ethers (PBDEs) in the Brisbane airshed. Air monitoring sites covered an area of 1143 km2 and PAS were allowed to accumulate PBDEs in the city's airshed over three consecutive seasons commencing in the winter of 2008. The average sum of five (∑5) PBDEs (BDEs 28, 47, 99, 100 and 209) levels were highest at the commercial and industrial sites (12.7 ± 5.2 ng PUF−1), which were relatively close to the city center and were a factor of 8 times higher than residential and semi-rural sites located in outer Brisbane. To estimate the magnitude of the urban ‘plume’ an empirical exponential decay model was used to fit PAS data vs. distance from the CBD, with the best correlation observed when the particulate bound BDE-209 was not included (∑5-209) (r2 = 0.99), rather than ∑5 (r2 = 0.84). At 95% confidence intervals the model predicts that regardless of site characterization, ∑5-209 concentrations in a PAS sample taken between 4–10 km from the city centre would be half that from a sample taken from the city centre and reach a baseline or plateau (0.6 to 1.3 ng PUF−1), approximately 30 km from the CBD. The observed exponential decay in ∑5-209 levels over distance corresponded with Brisbane's decreasing population density (persons/km2) from the city center. The residual error associated with the model increased significantly when including BDE-209 levels, primarily due to the highest level (11.4 ± 1.8 ng PUF−1) being consistently detected at the industrial site, indicating a potential primary source at this site. Active air samples collected alongside the PAS at the industrial air monitoring site (B) indicated BDE-209 dominated congener composition and was entirely associated with the particulate phase. This study demonstrates that PAS are effective tools for monitoring citywide regional differences however, interpretation of spatial trends for POPs which are predominantly associated with the particulate phase such as BDE-209, may be restricted to identifying ‘hotspots’ rather than broad spatial trends.
Resumo:
Principal Topic Although corporate entrepreneurship is of vital importance for long-term firm survival and growth (Zahra and Covin, 1995), researchers still struggle with understanding how to manage corporate entrepreneurship activities. Corporate entrepreneurship consists of three parts: innovation, venturing, and renewal processes (Guth and Ginsberg, 1990). Innovation refers to the development of new products, venturing to the creation of new businesses, and renewal to redefining existing businesses (Sharma, and Chrisman, 1999; Verbeke et al., 2007). Although there are many studies focusing on one of these aspects (cf. Burgelman, 1985; Huff et al., 1992), it is very difficult to compare the outcomes of these studies due to differences in contexts, measures, and methodologies. This is a significant lack in our understanding of CE, as firms engage in all three aspects of CE, making it important to compare managerial and organizational antecedents of innovation, venturing and renewal processes. Because factors that may enhance venturing activities may simultaneously inhibit renewal activities. The limited studies that did empirically compare the individual dimensions (cf. Zahra, 1996; Zahra et al., 2000; Yiu and Lau, 2008; Yiu et al., 2007) generally failed to provide a systematic explanation for potential different effects of organizational antecedents on innovation, venturing, and renewal. With this study we aim to investigate the different effects of structural separation and social capital on corporate entrepreneurship activities. The access to existing and the development of new knowledge has been deemed of critical importance in CE-activities (Floyd and Wooldridge, 1999; Covin and Miles, 2007; Katila and Ahuja, 2002). Developing new knowledge can be facilitated by structurally separating corporate entrepreneurial units from mainstream units (cf. Burgelman, 1983; Hill and Rothaermel, 2003; O'Reilly and Tushman, 2004). Existing knowledge and resources are available through networks of social relationships, defined as social capital (Nahapiet and Ghoshal, 1998; Yiu and Lau, 2008). Although social capital has primarily been studied at the organizational level, it might be equally important at top management level (Belliveau et al., 1996). However, little is known about the joint effects of structural separation and integrative mechanisms to provide access to social capital on corporate entrepreneurship. Could these integrative mechanisms for example connect the separated units to facilitate both knowledge creation and sharing? Do these effects differ for innovation, venturing, and renewal processes? Are the effects different for organizational versus top management team integration mechanisms? Corporate entrepreneurship activities have for example been suggested to take place at different levels. Whereas innovation is suggested to be a more bottom-up process, strategic renewal is a more top-down process (Floyd and Lane, 2000; Volberda et al., 2001). Corporate venturing is also a more bottom-up process, but due to the greater required resource commitments relative to innovation, it ventures need to be approved by top management (Burgelman, 1983). As such we will explore the following key research question in this paper: How do social capital and structural separation on organizational and TMT level differentially influence innovation, venturing, and renewal processes? Methodology/Key Propositions We investigated our hypotheses on a final sample of 240 companies in a variety of industries in the Netherlands. All our measures were validated in previous studies. We targeted a second respondent in each firm to reduce problems with single-rater data (James et al., 1984). We separated the measurement of the independent and the dependent variables in two surveys to create a one-year time lag and reduce potential common method bias (Podsakoff et al., 2003). Results and Implications Consistent with our hypotheses, our results show that configurations of structural separation and integrative mechanisms have different effects on the three aspects of corporate entrepreneurship. Innovation was affected by organizational level mechanisms, renewal by integrative mechanisms on top management team level and venturing by mechanisms on both levels. Surprisingly, our results indicated that integrative mechanisms on top management team level had negative effects on corporate entrepreneurship activities. We believe this paper makes two significant contributions. First, we provide more insight in what the effects of ambidextrous organizational forms (i.e. combinations of differentiation and integration mechanisms) are on venturing, innovation and renewal processes. Our findings show that more valuable insights can be gained by comparing the individual parts of corporate entrepreneurship instead of focusing on the whole. Second, we deliver insights in how management can create a facilitative organizational context for these corporate entrepreneurship activities.
Resumo:
In an automotive environment, the performance of a speech recognition system is affected by environmental noise if the speech signal is acquired directly from a microphone. Speech enhancement techniques are therefore necessary to improve the speech recognition performance. In this paper, a field-programmable gate array (FPGA) implementation of dual-microphone delay-and-sum beamforming (DASB) for speech enhancement is presented. As the first step towards a cost-effective solution, the implementation described in this paper uses a relatively high-end FPGA device to facilitate the verification of various design strategies and parameters. Experimental results show that the proposed design can produce output waveforms close to those generated by a theoretical (floating-point) model with modest usage of FPGA resources. Speech recognition experiments are also conducted on enhanced in-car speech waveforms produced by the FPGA in order to compare recognition performance with the floating-point representation running on a PC.
Resumo:
When asymptotic series methods are applied in order to solve problems that arise in applied mathematics in the limit that some parameter becomes small, they are unable to demonstrate behaviour that occurs on a scale that is exponentially small compared to the algebraic terms of the asymptotic series. There are many examples of physical systems where behaviour on this scale has important effects and, as such, a range of techniques known as exponential asymptotic techniques were developed that may be used to examinine behaviour on this exponentially small scale. Many problems in applied mathematics may be represented by behaviour within the complex plane, which may subsequently be examined using asymptotic methods. These problems frequently demonstrate behaviour known as Stokes phenomenon, which involves the rapid switches of behaviour on an exponentially small scale in the neighbourhood of some curve known as a Stokes line. Exponential asymptotic techniques have been applied in order to obtain an expression for this exponentially small switching behaviour in the solutions to orginary and partial differential equations. The problem of potential flow over a submerged obstacle has been previously considered in this manner by Chapman & Vanden-Broeck (2006). By representing the problem in the complex plane and applying an exponential asymptotic technique, they were able to detect the switching, and subsequent behaviour, of exponentially small waves on the free surface of the flow in the limit of small Froude number, specifically considering the case of flow over a step with one Stokes line present in the complex plane. We consider an extension of this work to flow configurations with multiple Stokes lines, such as flow over an inclined step, or flow over a bump or trench. The resultant expressions are analysed, and demonstrate interesting implications, such as the presence of exponentially sub-subdominant intermediate waves and the possibility of trapped surface waves for flow over a bump or trench. We then consider the effect of multiple Stokes lines in higher order equations, particu- larly investigating the behaviour of higher-order Stokes lines in the solutions to partial differential equations. These higher-order Stokes lines switch off the ordinary Stokes lines themselves, adding a layer of complexity to the overall Stokes structure of the solution. Specifically, we consider the different approaches taken by Howls et al. (2004) and Chap- man & Mortimer (2005) in applying exponential asymptotic techniques to determine the higher-order Stokes phenomenon behaviour in the solution to a particular partial differ- ential equation.
Resumo:
The collective purpose of these two studies was to determine a link between the V02 slow component and the muscle activation patterns that occur during cycling. Six, male subjects performed an incremental cycle ergometer exercise test to determine asub-TvENT (i.e. 80% of TvENT) and supra-TvENT (TvENT + 0.75*(V02 max - TvENT) work load. These two constant work loads were subsequently performed on either three or four occasions for 8 mins each, with V02 captured on a breath-by-breath basis for every test, and EMO of eight major leg muscles collected on one occasion. EMG was collected for the first 10 s of every 30 s period, except for the very first 10 s period. The V02 data was interpolated, time aligned, averaged and smoothed for both intensities. Three models were then fitted to the V02 data to determine the kinetics responses. One of these models was mono-exponential, while the other two were biexponential. A second time delay parameter was the only difference between the two bi-exponential models. An F-test was used to determine significance between the biexponential models using the residual sum of squares term for each model. EMO was integrated to obtain one value for each 10 s period, per muscle. The EMG data was analysed by a two-way repeated measures ANOV A. A correlation was also used to determine significance between V02 and IEMG. The V02 data during the sub-TvENT intensity was best described by a mono-exponential response. In contrast, during supra-TvENT exercise the two bi-exponential models best described the V02 data. The resultant F-test revealed no significant difference between the two models and therefore demonstrated that the slow component was not delayed relative to the onset of the primary component. Furthermore, only two parameters were deemed to be significantly different based upon the two models. This is in contrast to other findings. The EMG data, for most muscles, appeared to follow the same pattern as V02 during both intensities of exercise. On most occasions, the correlation coefficient demonstrated significance. Although some muscles demonstrated the same relative increase in IEMO based upon increases in intensity and duration, it cannot be assumed that these muscles increase their contribution to V02 in a similar fashion. Larger muscles with a higher percentage of type II muscle fibres would have a larger increase in V02 over the same increase in intensity.
Resumo:
We assess the performance of an exponential integrator for advancing stiff, semidiscrete formulations of the unsaturated Richards equation in time. The scheme is of second order and explicit in nature but requires the action of the matrix function φ(A) where φ(z) = [exp(z) - 1]/z on a suitability defined vector v at each time step. When the matrix A is large and sparse, φ(A)v can be approximated by Krylov subspace methods that require only matrix-vector products with A. We prove that despite the use of this approximation the scheme remains second order. Furthermore, we provide a practical variable-stepsize implementation of the integrator by deriving an estimate of the local error that requires only a single additional function evaluation. Numerical experiments performed on two-dimensional test problems demonstrate that this implementation outperforms second-order, variable-stepsize implementations of the backward differentiation formulae.
Resumo:
We study Krylov subspace methods for approximating the matrix-function vector product φ(tA)b where φ(z) = [exp(z) - 1]/z. This product arises in the numerical integration of large stiff systems of differential equations by the Exponential Euler Method, where A is the Jacobian matrix of the system. Recently, this method has found application in the simulation of transport phenomena in porous media within mathematical models of wood drying and groundwater flow. We develop an a posteriori upper bound on the Krylov subspace approximation error and provide a new interpretation of a previously published error estimate. This leads to an alternative Krylov approximation to φ(tA)b, the so-called Harmonic Ritz approximant, which we find does not exhibit oscillatory behaviour of the residual error.
Resumo:
Endocytosis is the process by which cells internalise molecules including nutrient proteins from the extracellular media. In one form, macropinocytosis, the membrane at the cell surface ruffles and folds over to give rise to an internalised vesicle. Negatively charged phospholipids within the membrane called phosphoinositides then undergo a series of transformations that are critical for the correct trafficking of the vesicle within the cell, and which are often pirated by pathogens such as Salmonella. Advanced fluorescent video microscopy imaging now allows the detailed observation and quantification of these events in live cells over time. Here we use these observations as a basis for building differential equation models of the transformations. An initial investigation of these interactions was modelled with reaction rates proportional to the sum of the concentrations of the individual constituents. A first order linear system for the concentrations results. The structure of the system enables analytical expressions to be obtained and the problem becomes one of determining the reaction rates which generate the observed data plots. We present results with reaction rates which capture the general behaviour of the reactions so that we now have a complete mathematical model of phosphoinositide transformations that fits the experimental observations. Some excellent fits are obtained with modulated exponential functions; however, these are not solutions of the linear system. The question arises as to how the model may be modified to obtain a system whose solution provides a more accurate fit.
Resumo:
Objective: To use our Bayesian method of motor unit number estimation (MUNE) to evaluate lower motor neuron degeneration in ALS. Methods: In subjects with ALS we performed serial MUNE studies. We examined the repeatability of the test and then determined whether the loss of MUs was fitted by an exponential or Weibull distribution. Results: The decline in motor unit (MU) numbers was well-fitted by an exponential decay curve. We calculated the half life of MUs in the abductor digiti minimi (ADM), abductor pollicis brevis (APB) and/or extensor digitorum brevis (EDB) muscles. The mean half life of the MUs of ADM muscle was greater than those of the APB or EDB muscles. The half-life of MUs was less in the ADM muscle of subjects with upper limb than in those with lower limb onset. Conclusions: The rate of loss of lower motor neurons in ALS is exponential, the motor units of the APB decay more quickly than those of the ADM muscle and the rate of loss of motor units is greater at the site of onset of disease. Significance: This shows that the Bayesian MUNE method is useful in following the course and exploring the clinical features of ALS. 2012 International Federation of Clinical Neurophysiology.