963 resultados para Evolution of engineering education research


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comunicação apresentada na 44th SEFI Conference, 12-­15 September 2016, Tampere, Finland

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been considerable debate about the need for more empirical, evidence based studies of the impact of various interventions and practices in engineering education. A number of resources including workshops to guide engineering faculty in the conduct of such studies have emerged over recent years. This paper presents a critique of the evolution of engineering education research and its underlying assumptions in the context of the systemic reform currently underway in engineering education. This critique leads to an analysis of the ways in which our current understanding of engineering, engineering education and research in engineering education is shaped by the traditions and cultural characteristics of the profession and grounded, albeit implicitly, in a particular suite of epistemological assumptions. It is argued that the whole enterprise of engineering education needs to be radically reconceptualized. A pluralistic approach to framing scholarship in engineering education is then proposed based on the principles of demonstrable practicality, critical interdisciplinarity and holistic reflexivity. This new framework has implications for engaging and developing faculty in the context of new teaching and learning paradigms, for the evaluation of the scholarship of teaching and for the research-teaching nexus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research in science education is now an international activity. This book asks for the first time, Does this research activity have an identity?-It uses the significant studies of more than 75 researchers in 15 countries to see to what extent they provide evidence for an identity as a distinctive field of research.-It considers trends in the research over time, and looks particularly at what progression in the research entails.-It provides insight into how researchers influence each other and how involvement in research affects the being of the researcher as a person.-It addresses the relation between research and practice in a manner that sees teaching and learning in the science classroom as interdependent with national policies and curriculum traditions about science. It gives graduate students and other early researchers an unusual overview of their research area as a whole. Established researchers will be interested in, and challenged by, the identity the author ascribes to the research and by the plea he makes for the science content itself to be seen as problematic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Engineering education in the United Kingdom is at the point of embarking upon an interesting journey into uncharted waters. At no point in the past have there been so many drivers for change and so many opportunities for the development of engineering pedagogy. This paper will look at how Engineering Education Research (EER) has developed within the UK and what differentiates it from the many small scale practitioner interventions, perhaps without a clear research question or with little evaluation, which are presented at numerous staff development sessions, workshops and conferences. From this position some examples of current projects will be described, outcomes of funding opportunities will be summarised and the benefits of collaboration with other disciplines illustrated. In this study, I will account for how the design of task structure according to variation theory, as well as the probe-ware technology, make the laws of force and motion visible and learnable and, especially, in the lab studied make Newton's third law visible and learnable. I will also, as a comparison, include data from a mechanics lab that use the same probe-ware technology and deal with the same topics in mechanics, but uses a differently designed task structure. I will argue that the lower achievements on the FMCE-test in this latter case can be attributed to these differences in task structure in the lab instructions. According to my analysis, the necessary pattern of variation is not included in the design. I will also present a microanalysis of 15 hours collected from engineering students' activities in a lab about impulse and collisions based on video recordings of student's activities in a lab about impulse and collisions. The important object of learning in this lab is the development of an understanding of Newton's third law. The approach analysing students interaction using video data is inspired by ethnomethodology and conversation analysis, i.e. I will focus on students practical, contingent and embodied inquiry in the setting of the lab. I argue that my result corroborates variation theory and show this theory can be used as a 'tool' for designing labs as well as for analysing labs and lab instructions. Thus my results have implications outside the domain of this study and have implications for understanding critical features for student learning in labs. Engineering higher education is well used to change. As technology develops the abilities expected by employers of graduates expand, yet our understanding of how to make informed decisions about learning and teaching strategies does not without a conscious effort to do so. With the numerous demands of academic life, we often fail to acknowledge our incomplete understanding of how our students learn within our discipline. The journey facing engineering education in the UK is being driven by two classes of driver. Firstly there are those which we have been working to expand our understanding of, such as retention and employability, and secondly the new challenges such as substantial changes to funding systems allied with an increase in student expectations. Only through continued research can priorities be identified, addressed and a coherent and strong voice for informed change be heard within the wider engineering education community. This new position makes it even more important that through EER we acquire the knowledge and understanding needed to make informed decisions regarding approaches to teaching, curriculum design and measures to promote effective student learning. This then raises the question 'how does EER function within a diverse academic community?' Within an existing community of academics interested in taking meaningful steps towards understanding the ongoing challenges of engineering education a Special Interest Group (SIG) has formed in the UK. The formation of this group has itself been part of the rapidly changing environment through its facilitation by the Higher Education Academy's Engineering Subject Centre, an entity which through the Academy's current restructuring will no longer exist as a discrete Centre dedicated to supporting engineering academics. The aims of this group, the activities it is currently undertaking and how it expects to network and collaborate with the global EER community will be reported in this paper. This will include explanation of how the group has identified barriers to the progress of EER and how it is seeking, through a series of activities, to facilitate recognition and growth of EER both within the UK and with our valued international colleagues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the sciences were being taught in Australian schools well before the Second World War, the only evidence of research studies of this teaching is to be found in the report, published by ACER in 1932 of Roy Stanhope’s survey of the teaching of chemistry in New South Wales and a standardized test he had developed. Roy Stanhope was a science teacher with a research masters degree in chemistry. He had won a scholarship to go to Stanford University for doctoral studies, but returned after one year when his scholarship was not extended. He went on to be a founder in 1943 of the Australian Science Teachers Association (ASTA), which honours this remarkable pioneer through its annual Stanhope Oration. In his retirement Stanhope undertook a comparative study of science

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tracking the evolution of research in waste recycling science (WRS) can be valuable for environmental agencies, as well as for recycling businesses. Maps of science are visual, easily readable representations of the cognitive structure of a branch of science, a particular area of research or the global spectrum of scientific production. They are generally built upon evidence collected from reliable sources of information, such as patent and scientific publication databases. This study uses the methodology developed by Rafols et al. (2010) to make a “double overlay map” of WRS upon a basemap reflecting the cognitive structure of all journal-published science, for the years 2005 and 2010. The analysis has taken into account the cognitive areas where WRS articles are published and the areas from where it takes its intellectual nourishing, paying special attention to the growing trends of the key areas. Interpretation of results lead to the conclusion that extraction of energy from waste will probably be an important research topic in the future, along with developments in general chemistry and chemical engineering oriented to the recovery of valuable materials from waste. Agricultural and material sciences, together with the combined economics, politics and geography field, are areas with which WRS shows a relevant and ever increasing cognitive relationship.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the last 50 years a new research area, science education research, has arisen and undergone singular development worldwide. In the specific case of Brazil, research in science education first appeared systematically 40 years ago, as a consequence of an overall renovation in the field of science education. This evolution was also related to the political events taking place in the country. We will use the theoretical work of Rene Kaes on the development of groups and institutions as a basis for our discussion of the most important aspects that have helped the area of science education research develop into an institution and kept it operating as such. The growth of this area of research can be divided into three phases: The first was related to its beginning and early configurations; the second consisted of a process of consolidation of this institution; and the third consists of more recent developments, characterised by a multiplicity of research lines and corresponding challenges to be faced. In particular, we will analyse the special contributions to this study gleaned from the field known as the history and philosophy of science.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This positional paper proposes a conceptual framework and methodological approach for use in a PhD study investigating the longer term educational and social impact of 'active' engineering focused interventions for children age 8-10 in the UK. The study will critically analyse how a child's participation in an engineering education activity contributes to the Engineering Capital that the child possesses; focusing on how the child's awareness and perceptions about engineering are affected. To achieve this aim it is proposed that Grounded Theory methodology be used to enable an in-depth analysis of participation from the perspective of the child participant. The study proposed will be longitudinal, taking place over three formative years for the education and career aspirations of the child, from age 8-10 to 11-13. Although the research is in its infancy, this paper will provide the opportunity to develop theory in an underdeveloped area of engineering education research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND OR CONTEXT: A developing international engineering industry is dependent on competition and innovation, creating a market for highly skilled graduates from respected overseas and Australian Engineering universities. The delivery of engineering teaching and learning via blended faceto-face, problem based, research focused and online collaborative learning will continue to be the foundation of future engineering education, however, it will be those institutions who can reshape its learning spaces within a culture of innovation using 1:1 devices that will continue to attract the brightest minds. Investing in educational research that explores the preferred learning styles of learners and matching this to specifically designed 1:1 personalized web applications may be the ‘value add’ to improve student engagement. In this paper, a survey of Australian engineering education is presented and contrasted against a backdrop of internationally recognised educational pedagogy to demonstrate how engineering teaching and learning has changed over time. This paper draws on research and identifies a gap where a necessity to question the validity of 1:1 devices as the next step in the evolution of engineering education needs to be undertaken. How will teaching and learning look using 1:1 devices and will it drive student demand into engineering higher
education courses. Will this lead to improving professional standards within a dynamic engineering education context? How will current and future teaching and learning be influenced by constructivism using 1:1 device technologies? How will the engineering industry benefit from higher education investment in individualised engineering education
using 1:1 devices for teaching and learning?
PURPOSE OR GOAL: To review the current academic thinking around the topic of 1:1 devices within higher education engineering teaching and learning context in Australia. To identify any gaps in the current understandings and use of 1:1 devices within engineering courses in Australia. To generate discussion and better understanding about how the use of 1:1 devices may hinder and/or improve teaching and learning and student engagement.
APPROACH: A review covering the development of engineering education in Australia and a broader international review of engineering teaching methodology. To identify the extent of research into the use and effectiveness of online strategies within engineering education utilising 1:1 devices for teaching and learning. i.e. “Students must feel that they are part of a learning community and derive motivation to engage in the study material from the lecturer.’ (Lloyd et al., 2001) It is proposed to add to the current body of understandings and explore the effectiveness of a constructiveness teaching approach using course material specifically designed to cater for individual learning styles and delivered via the use of 1:1 devices in the classroom. It is anticipated the research will contrast current engineering teaching and learning practices and identify factors that will facilitate a greater understanding about student connectedness and engagement with the teaching and learning experience; where a constructiveness environment is supported with the use of 1:1 devices. Also, it is anticipated that the constructed learning environment will foster a culture of innovation and students will be empowered to take control of their own learning and be encouraged to contribute back to the discussion initiated by the lecture and/or course material with the aid of 1:1 device technologies. A gap has been identified in the academic literature that show there is a need to understand the relationship between engineering teaching, learning, students engagement and the use of 1:1 devices.
DISCUSSION: A review covering the development of engineering education in Australia and a broader international review of engineering teaching methodology. To identify the extent of research into the use and effectiveness of online strategies within engineering education utilising 1:1 devices for teaching and learning. i.e. “Students must feel that they are part of a learning community and derive motivation to engage in the study material from the lecturer.’ (Lloyd et al., 2001) It is proposed to add to the current body of understandings and explore the effectiveness of a constructiveness teaching approach using course material specifically designed to cater for individual learning styles and delivered via the use of 1:1 devices in the classroom.
ANTICIPATED OUTCOMES: It is anticipated the research will contrast current engineering teaching and learning practices and identify factors that will facilitate a greater understanding about student connectedness and engagement with the teaching and learning experience; where a constructiveness environment is supported with the use of 1:1 devices. Also, it is anticipated that the constructed learning environment will foster a culture of innovation and students will be empowered to take control of their own learning and be encouraged to contribute back to the discussion initiated by the lecture and/or course material with the aid of 1:1 device technologies. A gap has been identified in the academic literature that show there is a need to understand the relationship between engineering teaching, learning, students engagement and the use of 1:1 devices.
RECOMMENDATIONS/IMPLICATIONS/CONCLUSION: A gap exists in the current research about the effectiveness and use of 1:1 devices in engineering education; therefore, it is necessary to undertake further research in the area. It is proposed to hypothesize and conduct field research to identify any shortcomings and possible benefits for engineering educators and learners within a constructivist-teaching
context that explores the relationship between the use of personalized 1:1 devices for teaching and learning, adapting for individual learning styles, and identification and application of appropriate teaching and learning strategies within a constructiveness engineering course approach. Research is required to clarify the following research questions;
• What education teaching and learning strategies best facilitate the use of 1:1 devices for online teaching and learning?
• Does student engagement improve when 1:1 device technologies are used and adapted to cater for individual learning styles during online delivery of engineering courses?
• What are the factors within a university engineering faculty that may hinder and/or support the use of 1:1 devices for online teaching and learning?
• To what extent do 1:1 devices assist engineering educators and students to foster a culture of innovation? The study results will offer engineering educators and students an opportunity to reflect on
their current teaching and learning practice, and contextualise the use of 1:1 devices as a tool to improve student engagement. It is expected the learning benefits will outweigh the implementation costs and derive a unique learning experience that will empower engineering educators and students to inspire a culture of innovation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Online social media systems have created new ways for individuals to communicate, share information and interact with a wide audience. For organisations, social media provide new avenues for communication and collaboration with their stakeholders. The potential value of social media tools to assist in the successful communication and marketing inside and outside of engineering organisations has been identified. In the context of engineering education, the potential of social media to open new modes of communication, interaction and experimentation between students and teachers has also been identified, and a limited number of examples can be found documented in the literature. One of the most widely-used social media tools is the ‘microblogging’ service Twitter. This research presents an analysis of nearly 19,000 tweets relating to ‘engineering education’ collected over a period of almost a year. Social network analysis is used to visualise the Twitter data. The Twitter social media communication is examined to identify who is active on this topic, who is influential, and what is the structure of the online conversations relating to engineering education. This work provides insights regarding how engineering education is currently represented in social media internationally, and offers a methodology to those interested in related future research.

Relevância:

100.00% 100.00%

Publicador: