940 resultados para Ethylene oxides
Resumo:
The molecular chain and lamellar crystal orientation in ultrathin films (thickness < 100 nm) of poly(di-n-hexylsilane) (PDHS) on silicon wafer substrates have been investigated by using transmission electronic microscopy, wide-angle X-ray diffraction, atomic force microscopy, and UV absorption spectroscopy. PDHS showed a film thickness-dependent molecular chain and lamellar crystal orientation. Lamellar crystals grew preferentially in flat-on orientation in the monolayer ultrathin films of PDHS, i.e., the silicon backbones were oriented along the surface-normal direction. By contrast, the orientation of lamellar crystals was preferentially edge-on in ultrathin films thicker than ca. 13 nm, i.e., the silicon backbones were oriented parallel to the substrate surface. We interpret the different orientations of molecular chain and lamellar crystal as due to the reduction of the entropy of the polymer chain near the substrate surface and the particularity of the crystallographic (001) plane of flat-on lamellae, respectively. A remarkable influence of the orientations of the silicon backbone on the UV absorption of these PDHS ultrathin films was observed due to the one-dimensional nature of sigma-electrons delocalized along the silicon backbone.
Resumo:
In this Letter, crystal growth of a symmetric crystalline-amorphous diblock copolymer, poly(styrene-b-epsilon-caprolactone) (PS-b-PCL), in thin films was investigated by atomic force microscopy (AFM), Relief structures of holes and islands were formed during annealing the film at the molten state, and the in situ observation of subsequent crystal growth at room temperature indicated that the crystals were preferred to occur at the edge of holes or islands and grew into the interior area. It was concluded that the stretched PCL blocks at the edge of relief structures, caused by material transportation or deformation of the interface, could act as nucleation agents during polymer crystallization. The crystal growth rate of individual lamellae varied both from lamellae to lamellae and in time, but the area occupied by crystals increased constantly with time. At 22 degreesC, the growth rate was 1.2 x 10(-2) mum(2)/min with the scan size 2 x 2 mum(2).
Resumo:
CeO2 nanoparticles were synthesized by the precipitation method and modified with para-toluene sulfonic acid (PTSH), either in situ or post-synthesis. The presence of PTSH in the samples was confirmed by FTIR. PXRD and FTIR analyses showed that the post-synthesis PTSH modification altered the CeO2 structure, whereas the in situ modification maintained intact the crystalline structure and UV-vis absorbance properties. For both in situ and post-synthesis modifications, TEM images revealed the presence of nanoparticles that were 5nm in size. The dispersibility of the in situ PTSH-modified material in a hydrophilic ureasil-poly(ethylene oxide) matrix was investigated using SAXS measurements, which indicated that CeO2 nanoparticles modified with PTSH in situ were less aggregated within the matrix, compared to unmodified CeO2 nanoparticles. © 2013 Elsevier B.V.
Resumo:
Microwave-based methods are widely employed to synthesize metal nanoparticles on various substrates. However, the detailed mechanism of formation of such hybrids has not been addressed. In this paper, we describe the thermodynamic and kinetic aspects of reduction of metal salts by ethylene glycol under microwave heating conditions. On the basis of this analysis, we identify the temperatures above which the reduction of the metal salt is thermodynamically favorable and temperatures above which the rates of homogeneous nucleation of the metal and the heterogeneous nucleation of the metal on supports are favored. We delineate different conditions which favor the heterogeneous nucleation of the metal on the supports over homogeneous nucleation in the solvent medium based on the dielectric loss parameters of the solvent and the support and the metal/solvent and metal/support interfacial energies. Contrary to current understanding, we show that metal particles can be selectively formed on the substrate even under situations where the temperature of the substrate Is lower than that of the surrounding medium. The catalytic activity of the Pt/CeO(2) and Pt/TiO(2) hybrids synthesized by this method for H(2) combustion reaction shows that complete conversion is achieved at temperatures as low as 100 degrees C with Pt-CeO(2) catalyst and at 50 degrees C with Pt-TiO(2) catalyst. Our method thus opens up possibilities for rational synthesis of high-activity supported catalysts using a fast microwave-based reduction method.
Resumo:
A single-stage plasma-catalytic reactor in which catalytic materials were packed was used to remove nitrogen oxides. The packing material was scoria being made of various metal oxides including Al2O3, MgO, TiO2, etc. Scoria was able to act not only as dielectric pellets but also as a catalyst in the presence of reducing agent such as ethylene and ammonia. Without plasma discharge, scoria did not work well as a catalyst in the temperature range of 100 °C to 200 °C, showing less than 10% of NOx removal efficiency. When plasma is produced inside the reactor, the NOx removal efficiency could be increased to 60% in this temperature range.
Resumo:
The reaction of tris(pentafluorophenyl)phosphine [5] with the nucleophiles dimethyl formamide (DMF), hexamethylphosphoric triamide (HMPA), diethyl formamide (DEF), hexaethylphosphoric triamide (HEPA), hydrazine, N,N-dimethyl hydrazine (in presence and/or absence of KF), phenylhydrazine, ammonium hydroxide, formamide, aniline, sodium hydrogen sulfide, and hexaethylphosphorous triamide was investigated. The reaction of [5] with DMF and HMPA gave the same product, namely tris-[4-(N,N-dimethylamino)-2,3,5,6-tetrafluorophenyl]phosphine [12] but in higher yield in the case of HMPA. Compound (5] also reacted with DEF to give tris[4-(N,N-diethylamino)-2,3,5,6-tetrafluorophenyl] phosphine [14]. When [51 was treated with HEPA, it gave a mixture of bis(pentafluorophe~yl)-(N,N-diethylamino-tetrafluorophenyl)phosphine, pentafluorophenyl-bis-(N,N-diethylamino-tetrafluorophenyl)phosphine and tris (N,N-diethylamino-tetrafluorophenyl)phosphine. Treatment of [5] with aqueeus hydrazine solution in excess ethanol gave tris(4-hydrazo-2,3,4,6-tetrafluorophenyl)phosphine [1s1 in high yield while reaction with aqueous hydrazine led to C-P cleavage and production of tetrafluorophenyl hydrazine. With N,N-dimethyl hydrazine, [5] gave tris(4-N,N-dimethylhydrazine-2,3,5,6-tetrafluorophenyl) phosphine {20j. The latter could be obtained in higher yield and shorter reaction time, by the addition of KF. The reaction of compound {51 with phenylhydrazine in THF gave bis(pentafluorophe~yl)-4-S-phenylhydrazino- 2,3,5,6-tetrafluorophenyl phosphine [22] in low yield. Reaction of [5] with ammonium hydroxide in THF at high pressure in the presence of KF gave tris-~4-amino-2,3,5,6-tetrafluorophenyl)phosphine [25]. Similarly, formamide led to a mixture of (C6F4NHZ)3P, (C6F4NHZ)ZPC6FS, (C6F4NHZ)ZPC6F4NHCHO, and C6F4NHZP(C6Fs)(C6F4NHCHO). When [5] was treated with aniline, a mixture of mono-, di-, and tri-substituted products was obtained. Sodium hydrogen sulfide in ethylene glycol/ pyridine led to C-P cleavage and the isolation of pentafluorobenzene and tetrafluorothiophenol. Reaction of [5] and its oxide [35] with different alkoxides in the corresponding alcohols led mainly to C-P bond cleavage products, with the exception of one case where sodium methoxide was used in ether, and which led to tris-(4-methoxy-2,3,9,6-tetrafluorophenyl)phosphine [37]. On the basis of various spectroscopic data, it was concluded that the para position in compound [5] was generally the favoured site of attack.
Resumo:
New composite doped poly (ethylene oxide) polymer electrolyte was developed using 2-mercapto benzimidazole as plasticizer and iodide/triiodide as redox couple. The fabrication of the cell involves Poly(ethylene oxide)/ 2-mercapto benzimidazole / iodide/triiodide as polymer electrolyte in dye-sensitized solar cell fabricated with N3 dye and TiO2 nanoparticles as the photoanode and Platinum coated FTO (fluorine doped SnO2) as counter electrode. The current-volatage characteristics under simulated sunlight AM1.5 shows a short circuit current Isc of 8.7mA and open circuit photovoltage 508 mV. The conductivity measurements for the new polymer electrolyte and the photoelectrochemical measurments were carried out systematically. In 2-mercapto benzimidazole the electron rich sulphur and nitrogen atoms, act as pi-electron donors that form good interaction with iodine which plays a vital role in the performance of the fabricated dye-sensitized solar cells. The resonance effect increases the stability of the cell to a considerable extent. These results suggest that the new composite polymer electrolyte performs as a promising new doped polymer-electrolyte.
Resumo:
Designed three-dimensional biodegradable poly(ethylene glycol)/poly(D,L-lactide) hydrogel structures were prepared for the first time by stereolithography at high resolutions. A photopolymerisable aqueous resin comprising PDLLA-PEG-PDLLA-based macromer, visible light photo-initiator, dye and inhibitor in DMSO/water was used to build the structures. Porous and non-porous hydrogels with well-defined architectures and good mechanical properties were prepared. Porous hydrogel structures with a gyroid pore network architecture showed narrow pore size distributions, excellent pore interconnectivity and good mechanical properties. The structures showed good cell seeding characteristics, and human mesenchymal stem cells adhered and proliferated well on these materials.
Resumo:
Three-dimensional biodegradable poly(ethylene glycol)/poly(D,L-lactide) hydrogel structures were prepared by stereolithography. A photo-polymerisable liquid resin comprising PDLLA-PEG-PDLLA-based macromer, visible light photo-initiator, dye and inhibitor in DMSO/water was used to build the structures. Hydrogels with welldefined architectures and good mechanical properties were prepared. Hydrogel structures with a gyroid pore network architecture showed narrow pore size distributions, excellent pore interconnectivity and good mechanical properties. The structures showed good cell seeding characteristics, and human mesenchymal stem cells adhered and proliferated on these materials.
Resumo:
Melt electrospinning is one aspect of electrospinning with relatively little published literature, although the technique avoids solvent accumulation and/or toxicity which is favoured in certain applications. In the study reported, we melt-electrospun blends of poly(ε-caprolactone) (PCL) and an amphiphilic diblock copolymer consisting of poly(ethylene glycol) and PCL segments (PEG-block-PCL). A custom-made electrospinning apparatus was built and various combinations of instrument parameters such as voltage and polymer feeding rate were investigated. Pure PEG-block-PCL copolymer melt electrospinning did not result in consistent and uniform fibres due to the low molecular weight, while blends of PCL and PEG-block-PCL, for some parameter combinations and certain weight ratios of the two components, were able to produce continuous fibres significantly thinner (average diameter of ca 2 µm) compared to pure PCL. The PCL fibres obtained had average diameters ranging from 6 to 33 µm and meshes were uniform for the lowest voltage employed while mesh uniformity decreased when the voltage was increased. This approach shows that PCL and blends of PEG-block-PCL and PCL can be readily processed by melt electrospinning to obtain fibrous meshes with varied average diameters and morphologies that are of interest for tissue engineering purposes. Copyright © 2010 Society of Chemical Industry
Resumo:
A series of porphyrins substituted in one or two meso-positions by diphenylphosphine oxide groups has been prepared by the palladium catalysed reaction of diphenylphosphine or its oxide with the corresponding bromoporphyrins. Compounds {MDPP-[P(O)Ph2]n} (M = H2, Ni, Zn; H2DPP = 5,15-diphenylporphyrin; n = 1, 2) were isolated in yields of 60-95%. The reaction is believed to proceed via the conventional oxidative addition, phosphination and reductive elimination steps, as the stoichiometric reaction of η1-palladio(II) porphyrin [PdBr(H2DPP)(dppe)] (H2DPP = 5,15-diphenylporphyrin; dppe = 1,2-bis(diphenylphosphino)ethane) with diphenylphosphine oxide also results in the desired mono-porphyrinylphosphine oxide [H2DPP-P(O)Ph2]. Attempts to isolate the tertiary phosphines failed due to their extreme air-sensitivity. Variable temperature 1H NMR studies of [H2DPP-P(O)Ph2] revealed an intrinsic lack of symmetry, while fluorescence spectroscopy showed that the phosphine oxide group does not behave as a "heavy atom" quencher. The electron withdrawing effect of the phosphine oxide group was confirmed by voltammetry. The ligands were characterised by multinuclear NMR and UV-visible spectroscopy as well as mass spectrometry. Single crystal X-ray crystallography showed that the bis(phosphine oxide) nickel(II) complex {[NiDPP-[P(O)Ph2]2} is monomeric in the solid state, with a ruffled porphyrin core and the two P=O fragments on the same side of the average plane of the molecule. On the other hand, the corresponding zinc(II) complex formed infinite chains through coordination of one Ph2PO substituent to the neighbouring zinc porphyrin through an almost linear P=O---Zn unit, leaving the other Ph2PO group facing into a parallel channel filled with disordered water molecules. These new phosphine oxides are attractive ligands for supramolecular porphyrin chemistry.
Resumo:
This research underlines the extensive application of nanostructured metal oxides in environmental systems such as hazardous waste remediation and water purification. This study tries to forge a new understanding of the complexity of adsorption and photocatalysis in the process of water treatment. Sodium niobate doped with a different amount of tantalum, was prepared via a hydrothermal reaction and was observed to be able to adsorb highly hazardous bivalent radioactive isotopes such as Sr2+ and Ra2+ions. This study facilitates the preparation of Nb-based adsorbents for efficiently removing toxic radioactive ions from contaminated water and also identifies the importance of understanding the influence of heterovalent substitution in microporous frameworks. Clay adsorbents were prepared via a two-step method to remove anionic and non-ionic herbicides from water. Firstly, layered beidellite clay was treated with acid in a hydrothermal process; secondly, common silane coupling agents, 3-chloro-propyl trimethoxysilane or triethoxy silane, were grafted onto the acid treated samples to prepare the adsorption materials. In order to isolate the effect of the clay surface, we compared the adsorption property of clay adsorbents with ƒ×-Al2O3 nanofibres grafted with the same functional groups. Thin alumina (£^-Al2O3) nanofibres were modified by the grafting of two organosilane agents 3-chloropropyltriethoxysilane and octyl triethoxysilane onto the surface, for the adsorptive removal of alachlor and imazaquin herbicides from water. The formation of organic groups during the functionalisation process established super hydrophobic sites along the surfaces and those non-polar regions of the surfaces were able to make close contact with the organic pollutants. A new structure of anatase crystals linked to clay fragments was synthesised by the reaction of TiOSO4 with laponite clay for the degradation of pesticides. Based on the Ti/clay ratio, these new catalysts showed a high degradation rate when compared with P25. Moreover, immobilized TiO2 on laponite clay fragments could be readily separated out from a slurry system after the photocatalytic reaction. Using a series of partial phase transition methods, an effective catalyst with fibril morphology was prepared for the degradation of different types of phenols and trace amount of herbicides from water. Both H-titanate and TiO2-(B) fibres coated with anatase nanocrystal were studied. When compared with a laponite clay photocatalyst, it was found that anatase dotted TiO2-(B) fibres prepared by a 45 h hydrothermal treatment followed by calcination were not only superior in performance in photocatalysis but could also be readily separated from a slurry system after photocatalytic reactions. This study has laid the foundation for the development of the ability to fabricate highly efficient nanostructured solids for the removal of radioactive ions and organic pollutants from contaminated water. These results now seem set to contribute to the development of advanced water purification devices in the future. These modified nanostructured materials with unusual properties have broadened their application range beyond their traditional use as adsorbents, to also encompass the storage of nuclear waste after concentrating from contaminated water.