1000 resultados para Estimación de movimiento
Resumo:
Incluye Bibliografía
Resumo:
Máster Universitario en Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería (SIANI)
Resumo:
Comunicación presentada en SCETA, Seminario Sobre Computación Evolutiva, celebrado en la VII Conferencia de la Asociación Española para la Inteligencia Artificial, CAEPIA, Málaga, 12-14 noviembre 1997.
Resumo:
El flujo óptico y la estimación de movimiento es área de conocimiento muy importante usado en otros campos del conocimiento como el de la seguridad o el de la bioinformática. En estos sectores, se demandan aplicaciones de flujo óptico que realicen actividades muy importantes con tiempos de ejecución lo más bajos posibles, llegando a tiempo real si es posible. Debido a la gran complejidad de cálculos que siguen a este tipo de algoritmos como se observará en la sección de resultados, la aceleración de estos es una parte vital para dar soporte y conseguir ese tiempo real tan buscado. Por lo que planteamos como objetivo para este TFG la aceleración de este tipo de algoritmos mediante diversos tipos de aceleradores usando OpenCL y de paso demostrar que OpenCL es una buena herramienta que permite códigos paralelizados con un gran Speedup a la par que funcionar en toda una diversa gama de dispositivos tan distintos como un GPU y una FPGA. Para lo anteriormente mencionado trataremos de desarrollar un código para cada algoritmo y optimizarlo de forma no especifica a una plataforma para posteriormente ejecutarlo sobre las diversas plataformas y medir tiempos y error para cada algoritmo. Para el desarrollo de este proyecto partimos de la teoría de dos algoritmos ya existentes: Lucas&Kanade monoescala y el Horn&Schunck. Además, usaremos estímulos para estos algoritmos muy aceptados por la comunidad como pueden ser el RubberWhale o los Grove, los cuales nos ayudarán a establecer la corrección de estos algoritmos y analizar su precisión, dando así un estudio referencia para saber cual escoger.
Resumo:
Aquesta tesi s'emmarca dins del projecte CICYT TAP 1999-0443-C05-01. L'objectiu d'aquest projecte és el disseny, implementació i avaluació de robots mòbils, amb un sistema de control distribuït, sistemes de sensorització i xarxa de comunicacions per realitzar tasques de vigilància. Els robots han de poder-se moure per un entorn reconeixent la posició i orientació dels diferents objectes que l'envolten. Aquesta informació ha de permetre al robot localitzar-se dins de l'entorn on es troba per poder-se moure evitant els possibles obstacles i dur a terme la tasca encomanada. El robot ha de generar un mapa dinàmic de l'entorn que serà utilitzat per localitzar la seva posició. L'objectiu principal d'aquest projecte és aconseguir que un robot explori i construeixi un mapa de l'entorn sense la necessitat de modificar el propi entorn. Aquesta tesi està enfocada en l'estudi de la geometria dels sistemes de visió estereoscòpics formats per dues càmeres amb l'objectiu d'obtenir informació geomètrica 3D de l'entorn d'un vehicle. Aquest objectiu tracta de l'estudi del modelatge i la calibració de càmeres i en la comprensió de la geometria epipolar. Aquesta geometria està continguda en el que s'anomena emph{matriu fonamental}. Cal realitzar un estudi del càlcul de la matriu fonamental d'un sistema estereoscòpic amb la finalitat de reduir el problema de la correspondència entre dos plans imatge. Un altre objectiu és estudiar els mètodes d'estimació del moviment basats en la geometria epipolar diferencial per tal de percebre el moviment del robot i obtenir-ne la posició. Els estudis de la geometria que envolta els sistemes de visió estereoscòpics ens permeten presentar un sistema de visió per computador muntat en un robot mòbil que navega en un entorn desconegut. El sistema fa que el robot sigui capaç de generar un mapa dinàmic de l'entorn a mesura que es desplaça i determinar quin ha estat el moviment del robot per tal de emph{localitzar-se} dins del mapa. La tesi presenta un estudi comparatiu dels mètodes de calibració de càmeres més utilitzats en les últimes dècades. Aquestes tècniques cobreixen un gran ventall dels mètodes de calibració clàssics. Aquest mètodes permeten estimar els paràmetres de la càmera a partir d'un conjunt de punts 3D i de les seves corresponents projeccions 2D en una imatge. Per tant, aquest estudi descriu un total de cinc tècniques de calibració diferents que inclouen la calibració implicita respecte l'explicita i calibració lineal respecte no lineal. Cal remarcar que s'ha fet un gran esforç en utilitzar la mateixa nomenclatura i s'ha estandaritzat la notació en totes les tècniques presentades. Aquesta és una de les dificultats principals a l'hora de poder comparar les tècniques de calibració ja què cada autor defineix diferents sistemes de coordenades i diferents conjunts de paràmetres. El lector és introduït a la calibració de càmeres amb la tècnica lineal i implícita proposada per Hall i amb la tècnica lineal i explicita proposada per Faugeras-Toscani. A continuació es passa a descriure el mètode a de Faugeras incloent el modelatge de la distorsió de les lents de forma radial. Seguidament es descriu el conegut mètode proposat per Tsai, i finalment es realitza una descripció detallada del mètode de calibració proposat per Weng. Tots els mètodes són comparats tant des del punt de vista de model de càmera utilitzat com de la precisió de la calibració. S'han implementat tots aquests mètodes i s'ha analitzat la precisió presentant resultats obtinguts tant utilitzant dades sintètiques com càmeres reals. Calibrant cada una de les càmeres del sistema estereoscòpic es poden establir un conjunt de restriccions geomètri ques entre les dues imatges. Aquestes relacions són el que s'anomena geometria epipolar i estan contingudes en la matriu fonamental. Coneixent la geometria epipolar es pot: simplificar el problema de la correspondència reduint l'espai de cerca a llarg d'una línia epipolar; estimar el moviment d'una càmera quan aquesta està muntada sobre un robot mòbil per realitzar tasques de seguiment o de navegació; reconstruir una escena per aplicacions d'inspecció, propotipatge o generació de motlles. La matriu fonamental s'estima a partir d'un conjunt de punts en una imatges i les seves correspondències en una segona imatge. La tesi presenta un estat de l'art de les tècniques d'estimació de la matriu fonamental. Comença pels mètode lineals com el dels set punts o el mètode dels vuit punts, passa pels mètodes iteratius com el mètode basat en el gradient o el CFNS, fins arribar las mètodes robustos com el M-Estimators, el LMedS o el RANSAC. En aquest treball es descriuen fins a 15 mètodes amb 19 implementacions diferents. Aquestes tècniques són comparades tant des del punt de vista algorísmic com des del punt de vista de la precisió que obtenen. Es presenten el resultats obtinguts tant amb imatges reals com amb imatges sintètiques amb diferents nivells de soroll i amb diferent quantitat de falses correspondències. Tradicionalment, l'estimació del moviment d'una càmera està basada en l'aplicació de la geometria epipolar entre cada dues imatges consecutives. No obstant el cas tradicional de la geometria epipolar té algunes limitacions en el cas d'una càmera situada en un robot mòbil. Les diferencies entre dues imatges consecutives són molt petites cosa que provoca inexactituds en el càlcul de matriu fonamental. A més cal resoldre el problema de la correspondència, aquest procés és molt costós en quant a temps de computació i no és gaire efectiu per aplicacions de temps real. En aquestes circumstàncies les tècniques d'estimació del moviment d'una càmera solen basar-se en el flux òptic i en la geometria epipolar diferencial. En la tesi es realitza un recull de totes aquestes tècniques degudament classificades. Aquests mètodes són descrits unificant la notació emprada i es remarquen les semblances i les diferencies entre el cas discret i el cas diferencial de la geometria epipolar. Per tal de poder aplicar aquests mètodes a l'estimació de moviment d'un robot mòbil, aquest mètodes generals que estimen el moviment d'una càmera amb sis graus de llibertat, han estat adaptats al cas d'un robot mòbil que es desplaça en una superfície plana. Es presenten els resultats obtinguts tant amb el mètodes generals de sis graus de llibertat com amb els adaptats a un robot mòbil utilitzant dades sintètiques i seqüències d'imatges reals. Aquest tesi finalitza amb una proposta de sistema de localització i de construcció d'un mapa fent servir un sistema estereoscòpic situat en un robot mòbil. Diverses aplicacions de robòtica mòbil requereixen d'un sistema de localització amb l'objectiu de facilitar la navegació del vehicle i l'execució del les trajectòries planificades. La localització es sempre relativa al mapa de l'entorn on el robot s'està movent. La construcció de mapes en un entorn desconegut és una tasca important a realitzar per les futures generacions de robots mòbils. El sistema que es presenta realitza la localització i construeix el mapa de l'entorn de forma simultània. A la tesi es descriu el robot mòbil GRILL, que ha estat la plataforma de treball emprada per aquesta aplicació, amb el sistema de visió estereoscòpic que s'ha dissenyat i s'ha muntat en el robot. També es descriu tots el processos que intervenen en el sistema de localització i construcció del mapa. La implementació d'aquest processos ha estat possible gràcies als estudis realitzats i presentats prèviament (calibració de càmeres, estimació de la matriu fonamental, i estimació del moviment) sense els quals no s'hauria pogut plantejar aquest sistema. Finalment es presenten els mapes en diverses trajectòries realitzades pel robot GRILL en el laboratori. Les principals contribucions d'aquest treball són: ·Un estat de l'art sobre mètodes de calibració de càmeres. El mètodes són comparats tan des del punt de vista del model de càmera utilitzat com de la precisió dels mètodes. ·Un estudi dels mètodes d'estimació de la matriu fonamental. Totes les tècniques estudiades són classificades i descrites des d'un punt de vista algorísmic. ·Un recull de les tècniques d'estimació del moviment d'una càmera centrat en el mètodes basat en la geometria epipolar diferencial. Aquestes tècniques han estat adaptades per tal d'estimar el moviment d'un robot mòbil. ·Una aplicació de robòtica mòbil per tal de construir un mapa dinàmic de l'entorn i localitzar-se per mitja d'un sistema estereoscòpic. L'aplicació presentada es descriu tant des del punt de vista del maquinari com del programari que s'ha dissenyat i implementat.
Resumo:
El treball desenvolupat en aquesta tesi aprofundeix i aporta solucions innovadores en el camp orientat a tractar el problema de la correspondència en imatges subaquàtiques. En aquests entorns, el que realment complica les tasques de processat és la falta de contorns ben definits per culpa d'imatges esborronades; un fet aquest que es deu fonamentalment a il·luminació deficient o a la manca d'uniformitat dels sistemes d'il·luminació artificials. Els objectius aconseguits en aquesta tesi es poden remarcar en dues grans direccions. Per millorar l'algorisme d'estimació de moviment es va proposar un nou mètode que introdueix paràmetres de textura per rebutjar falses correspondències entre parells d'imatges. Un seguit d'assaigs efectuats en imatges submarines reals han estat portats a terme per seleccionar les estratègies més adients. Amb la finalitat d'aconseguir resultats en temps real, es proposa una innovadora arquitectura VLSI per la implementació d'algunes parts de l'algorisme d'estimació de moviment amb alt cost computacional.
Resumo:
En el ámbito de la robótica de servicio, actualmente no existe una solución automatizada para la inspección ultrasónica de las partes de material compuesto de una aeronave durante las operaciones de mantenimiento que realiza la aerolínea. El desarrollo de las nuevas técnicas de acoplamiento acústico en seco en el método de inspección no destructiva por ultrasonidos, está conduciendo a posibilitar su uso con soluciones de menor coste respecto a las técnicas tradicionales, sin perder eficacia para detectar las deficiencias en las estructuras de material compuesto. Aunque existen aplicaciones de esta técnica con soluciones manuales, utilizadas en las fases de desarrollo y fabricación del material compuesto, o con soluciones por control remoto en sectores diferentes al aeronáutico para componentes metálicos, sin embargo, no existen con soluciones automatizadas para la inspección no destructiva por ultrasonidos de las zonas del avión fabricadas en material compuesto una vez la aeronave ha sido entregada a la aerolínea. El objetivo de este trabajo fin de master es evaluar el sistema de localización, basado en visión por ordenador, de una solución robotizada aplicada la inspección ultrasónica estructural de aeronaves en servicio por parte de las propias aerolíneas, utilizando las nuevas técnicas de acoplamiento acústico en seco, buscando la ventaja de reducir los tiempos y los costes en las operaciones de mantenimiento. Se propone como solución un robot móvil autónomo de pequeño tamaño, con control de posición global basado en técnicas de SLAM Visual Monocular, utilizando marcadores visuales externos para delimitar el área de inspección. Se ha supuesto la inspección de elementos de la aeronave cuya superficie se pueda considerar plana y horizontal, como son las superficies del estabilizador horizontal o del ala. Este supuesto es completamente aceptable en zonas acotadas de estos componentes, y de cara al objetivo del proyecto, no le resta generalidad. El robot móvil propuesto es un vehículo terrestre triciclo, de dos grados de libertad, con un sistema de visión monocular completo embarcado, incluyendo el hardware de procesamiento de visión y control de trayectoria. Las dos ruedas delanteras son motrices y la tercera rueda, loca, sirve únicamente de apoyo. La dirección, de tipo diferencial, permite al robot girar sin necesidad de desplazamiento, al conseguirse por diferencia de velocidad entre la rueda motriz derecha e izquierda. El sistema de inspección ultrasónica embarcado está compuesto por el hardware de procesamiento y registro de señal, y una rueda-sensor situada coaxialmente al eje de las ruedas motrices, y centrada entre estas, de modo que la medida de inspección se realiza en el centro de rotación del robot. El control visual propuesto se realiza mediante una estrategia “ver y mover” basada en posición, ejecutándose de forma secuencial la extracción de características visuales de la imagen, el cálculo de la localización global del robot mediante SLAM visual y el movimiento de éste mediante un algoritmo de control de posición-orientación respecto a referencias de paso de la trayectoria. La trayectoria se planifica a partir del mapa de marcas visuales que delimitan el área de inspección, proporcionado también por SLAM visual. Para validar la solución propuesta se ha optado por desarrollar un prototipo físico tanto del robot como de los marcadores visuales externos, a los que se someterán a una prueba de validación como alternativa a utilizar un entorno simulado por software, consistente en el reconocimiento del área de trabajo, planeamiento de la trayectoria y recorrido de la misma, de forma autónoma, registrando el posicionamiento real del robot móvil junto con el posicionamiento proporcionado por el sistema de localización SLAM. El motivo de optar por un prototipo es validar la solución ante efectos físicos que son muy complicados de modelar en un entorno de simulación, derivados de las limitaciones constructivas de los sistemas de visión, como distorsiones ópticas o saturación de los sensores, y de las limitaciones constructivas de la mecánica del robot móvil que afectan al modelo cinemático, como son el deslizamiento de las ruedas o la fluctuación de potencia de los motores eléctricos. El prototipo de marcador visual externo utilizado para la prueba de validación, ha sido un símbolo plano vertical, en blanco y negro, que consta de un borde negro rectangular dentro del cual se incluye una serie de marcas cuadradas de color negro, cuya disposición es diferente para cada marcador, lo que permite su identificación. El prototipo de robot móvil utilizado para la prueba de validación, ha sido denominado VINDUSTOR: “VIsual controlled Non-Destructive UltraSonic inspecTOR”. Su estructura mecánica ha sido desarrollada a partir de la plataforma comercial de robótica educacional LEGO© MINDSTORMS NXT 2.0, que incluye los dos servomotores utilizados para accionar las dos ruedas motrices, su controlador, las ruedas delanteras y la rueda loca trasera. La estructura mecánica ha sido especialmente diseñada con piezas LEGO© para embarcar un ordenador PC portátil de tamaño pequeño, utilizado para el procesamiento visual y el control de movimiento, y el sistema de captación visual compuesto por dos cámaras web de bajo coste, colocadas una en posición delantera y otra en posición trasera, con el fin de aumentar el ángulo de visión. El peso total del prototipo no alcanza los 2 Kg, siendo sus dimensiones máximas 20 cm de largo, 25 cm de ancho y 26 cm de alto. El prototipo de robot móvil dispone de un control de tipo visual. La estrategia de control es de tipo “ver y mover” dinámico, en la que se realiza un bucle externo, de forma secuencial, la extracción de características en la imagen, la estimación de la localización del robot y el cálculo del control, y en un bucle interno, el control de los servomotores. La estrategia de adquisición de imágenes está basada en un sistema monocular de cámaras embarcadas. La estrategia de interpretación de imágenes está basada en posición tridimensional, en la que los objetivos de control se definen en el espacio de trabajo y no en la imagen. La ley de control está basada en postura, relacionando la velocidad del robot con el error en la posición respecto a las referencias de paso de una trayectoria. La trayectoria es generada a partir del mapa de marcadores visuales externo. En todo momento, la localización del robot respecto a un sistema de referencia externo y el mapa de marcadores, es realizado mediante técnicas de SLAM visual. La auto-localización de un robot móvil dentro de un entorno desconocido a priori constituye uno de los desafíos más importantes en la robótica, habiéndose conseguido su solución en las últimas décadas, con una formulación como un problema numérico y con implementaciones en casos que van desde robots aéreos a robots en entornos cerrados, existiendo numerosos estudios y publicaciones al respecto. La primera técnica de localización y mapeo simultáneo SLAM fue desarrollada en 1989, más como un concepto que como un algoritmo único, ya que su objetivo es gestionar un mapa del entorno constituido por posiciones de puntos de interés, obtenidos únicamente a partir de los datos de localización recogidos por los sensores, y obtener la pose del robot respecto al entorno, en un proceso limitado por el ruido de los sensores, tanto en la detección del entorno como en la odometría del robot, empleándose técnicas probabilísticas aumentar la precisión en la estimación. Atendiendo al algoritmo probabilístico utilizado, las técnicas SLAM pueden clasificarse en las basadas en Filtros de Kalman, en Filtros de Partículas y en su combinación. Los Filtros de Kalman consideran distribuciones de probabilidad gaussiana tanto en las medidas de los sensores como en las medidas indirectas obtenidas a partir de ellos, de modo que utilizan un conjunto de ecuaciones para estimar el estado de un proceso, minimizando la media del error cuadrático, incluso cuando el modelo del sistema no se conoce con precisión, siendo el más utilizado el Filtro de Kalman Extendido a modelos nolineales. Los Filtros de Partículas consideran distribuciones de probabilidad en las medidas de los sensores sin modelo, representándose mediante un conjunto de muestras aleatorias o partículas, de modo que utilizan el método Montecarlo secuencial para estimar la pose del robot y el mapa a partir de ellas de forma iterativa, siendo el más utilizado el Rao-Backwell, que permite obtener un estimador optimizado mediante el criterio del error cuadrático medio. Entre las técnicas que combinan ambos tipos de filtros probabilísticos destaca el FastSLAM, un algoritmo que estima la localización del robot con un Filtro de Partículas y la posición de los puntos de interés mediante el Filtro de Kalman Extendido. Las técnicas SLAM puede utilizar cualquier tipo de sensor que proporcionen información de localización, como Laser, Sonar, Ultrasonidos o Visión. Los sensores basados en visión pueden obtener las medidas de distancia mediante técnicas de visión estereoscópica o mediante técnica de visión monocular. La utilización de sensores basados en visión tiene como ventajas, proporcionar información global a través de las imágenes, no sólo medida de distancia, sino también información adicional como texturas o patrones, y la asequibilidad del hardware frente a otros sensores. Sin embargo, su principal inconveniente es el alto coste computacional necesario para los complejos algoritmos de detección, descripción, correspondencia y reconstrucción tridimensional, requeridos para la obtención de la medida de distancia a los múltiples puntos de interés procesados. Los principales inconvenientes del SLAM son el alto coste computacional, cuando se utiliza un número elevado de características visuales, y su consistencia ante errores, derivados del ruido en los sensores, del modelado y del tratamiento de las distribuciones de probabilidad, que pueden producir el fallo del filtro. Dado que el SLAM basado en el Filtro de Kalman Extendido es una las técnicas más utilizadas, se ha seleccionado en primer lugar cómo solución para el sistema de localización del robot, realizando una implementación en la que las medidas de los sensores y el movimiento del robot son simulados por software, antes de materializarla en el prototipo. La simulación se ha realizado considerando una disposición de ocho marcadores visuales que en todo momento proporcionan ocho medidas de distancia con ruido aleatorio equivalente al error del sensor visual real, y un modelo cinemático del robot que considera deslizamiento de las ruedas mediante ruido aleatorio. Durante la simulación, los resultados han mostrado que la localización estimada por el algoritmo SLAM-EKF presenta tendencia a corregir la localización obtenida mediante la odometría, pero no en suficiente cuantía para dar un resultado aceptable, sin conseguir una convergencia a una solución suficientemente cercana a la localización simulada del robot y los marcadores. La conclusión obtenida tras la simulación ha sido que el algoritmo SLAMEKF proporciona inadecuada convergencia de precisión, debido a la alta incertidumbre en la odometría y a la alta incertidumbre en las medidas de posición de los marcadores proporcionadas por el sensor visual. Tras estos resultados, se ha buscado una solución alternativa. Partiendo de la idea subyacente en los Filtros de Partículas, se ha planteado sustituir las distribuciones de probabilidad gaussianas consideradas por el Filtro de Kalman Extendido, por distribuciones equi-probables que derivan en funciones binarias que representan intervalos de probabilidad no-nula. La aplicación de Filtro supone la superposición de todas las funciones de probabilidad no-nula disponibles, de modo que el resultado es el intervalo donde existe alguna probabilidad de la medida. Cómo la efectividad de este filtro aumenta con el número disponible de medidas, se ha propuesto obtener una medida de la localización del robot a partir de cada pareja de medidas disponibles de posición de los marcadores, haciendo uso de la Trilateración. SLAM mediante Trilateración Estadística (SLAM-ST) es como se ha denominado a esta solución propuesta en este trabajo fin de master. Al igual que con el algoritmo SLAM-EKF, ha sido realizada una implementación del algoritmo SLAM-ST en la que las medidas de los sensores y el movimiento del robot son simulados, antes de materializarla en el prototipo. La simulación se ha realizado en las mismas condiciones y con las mismas consideraciones, para comparar con los resultados obtenidos con el algoritmo SLAM-EKF. Durante la simulación, los resultados han mostrado que la localización estimada por el algoritmo SLAM-ST presenta mayor tendencia que el algoritmo SLAM-EKF a corregir la localización obtenida mediante la odometría, de modo que se alcanza una convergencia a una solución suficientemente cercana a la localización simulada del robot y los marcadores. Las conclusiones obtenidas tras la simulación han sido que, en condiciones de alta incertidumbre en la odometría y en la medida de posición de los marcadores respecto al robot, el algoritmo SLAM-ST proporciona mejores resultado que el algoritmo SLAM-EKF, y que la precisión conseguida sugiere la viabilidad de la implementación en el prototipo. La implementación del algoritmo SLAM-ST en el prototipo ha sido realizada en conjunción con la implementación del Sensor Visual Monocular, el Modelo de Odometría y el Control de Trayectoria. El Sensor Visual Monocular es el elemento del sistema SLAM encargado de proporcionar la posición con respecto al robot de los marcadores visuales externos, a partir de las imágenes obtenidas por las cámaras, mediante técnicas de procesamiento de imagen que permiten detectar e identificar los marcadores visuales que se hallen presentes en la imagen capturada, así como obtener las características visuales a partir de las cuales inferir la posición del marcador visual respecto a la cámara, mediante reconstrucción tridimensional monocular, basada en el conocimiento a-priori del tamaño real del mismo. Para tal fin, se ha utilizado el modelo matemático de cámara pin-hole, y se ha considerado las distorsiones de la cámara real mediante la calibración del sensor, en vez de utilizar la calibración de la imagen, tras comprobar el alto coste computacional que requiere la corrección de la imagen capturada, de modo que la corrección se realiza sobre las características visuales extraídas y no sobre la imagen completa. El Modelo de Odometría es el elemento del sistema SLAM encargado de proporcionar la estimación de movimiento incremental del robot en base a la información proporcionada por los sensores de odometría, típicamente los encoders de las ruedas. Por la tipología del robot utilizado en el prototipo, se ha utilizado un modelo cinemático de un robot tipo uniciclo y un modelo de odometría de un robot móvil de dos ruedas tipo diferencial, en el que la traslación y la rotación se determinan por la diferencia de velocidad de las ruedas motrices, considerando que no existe deslizamiento entre la rueda y el suelo. Sin embargo, el deslizamiento en las ruedas aparece como consecuencia de causas externas que se producen de manera inconstante durante el movimiento del robot que provocan insuficiente contacto de la rueda con el suelo por efectos dinámicos. Para mantener la validez del modelo de odometría en todas estas situaciones que producen deslizamiento, se ha considerado un modelo de incertidumbre basado en un ensayo representativo de las situaciones más habituales de deslizamiento. El Control de Trayectoria es el elemento encargado de proporcionar las órdenes de movimiento al robot móvil. El control implementado en el prototipo está basado en postura, utilizando como entrada la desviación en la posición y orientación respecto a una referencia de paso de la trayectoria. La localización del robot utilizada es siempre de la estimación proporcionada por el sistema SLAM y la trayectoria es planeada a partir del conocimiento del mapa de marcas visuales que limitan el espacio de trabajo, mapa proporcionado por el sistema SLAM. Las limitaciones del sensor visual embarcado en la velocidad de estabilización de la imagen capturada han conducido a que el control se haya implementado con la estrategia “mirar parado”, en la que la captación de imágenes se realiza en posición estática. Para evaluar el sistema de localización basado en visión del prototipo, se ha diseñado una prueba de validación que obtenga una medida cuantitativa de su comportamiento. La prueba consiste en la realización de forma completamente autónoma de la detección del espacio de trabajo, la planificación de una trayectoria de inspección que lo transite completamente, y la ejecución del recorrido de la misma, registrando simultáneamente la localización real del robot móvil junto con la localización proporcionada por el sistema SLAM Visual Monocular. Se han realizado varias ejecuciones de prueba de validación, siempre en las mismas condiciones iniciales de posición de marcadores visuales y localización del robot móvil, comprobando la repetitividad del ensayo. Los resultados presentados corresponden a la consideración de las medidas más pesimistas obtenidas tras el procesamiento del conjunto de medidas de todos los ensayos. Los resultados revelan que, considerando todo el espacio de trabajo, el error de posición, diferencia entre los valores de proporcionados por el sistema SLAM y los valores medidos de posición real, se encuentra en el entorno de la veintena de centímetros. Además, los valores de incertidumbre proporcionados por el sistema SLAM son, en todos los casos, superiores a este error. Estos resultados conducen a concluir que el sistema de localización basado en SLAM Visual, mediante un algoritmo de Trilateración Estadística, usando un sensor visual monocular y marcadores visuales externos, funciona, proporcionando la localización del robot móvil con respecto al sistema de referencia global inicial y un mapa de su situación de los marcadores visuales, con precisión limitada, pero con incertidumbre conservativa, al estar en todo momento el error real de localización por debajo del error estimado. Sin embargo, los resultados de precisión del sistema de localización no son suficientemente altos para cumplir con los requerimientos como solución robotizada aplicada a la inspección ultrasónica estructural de aeronaves en servicio. En este sentido, los resultados sugieren que la posible continuación de este trabajo en el futuro debe centrarse en la mejora de la precisión de localización del robot móvil, con líneas de trabajo encaminadas a mejorar el comportamiento dinámico del prototipo, en mejorar la precisión de las medidas de posición proporcionadas por el sensor visual y en optimizar el resultado del algoritmo SLAM. Algunas de estas líneas futuras podrían ser la utilización de plataformas robóticas de desarrollo alternativas, la exploración de técnicas de visión por computador complementarias, como la odometría visual, la visión omnidireccional, la visión estereoscópica o las técnicas de reconstrucción tridimensional densa a partir de captura monocular, y el análisis de algoritmos SLAM alternativos condicionado a disponer de una sustancial mejora de precisión en el modelo de odometría y en las medidas de posición de los marcadores.
Resumo:
El presente trabajo parte con la intención de crear un entorno gráfico cómodo y amigable con el cual desarrollar la práctica relacionada con el estudio de las estrategias de estimación y compensación de movimiento aplicadas en los estándares de codificación de vídeo, y que forma parte de la asignatura “Televisión” de 4º de grado. Hasta ahora, se viene utilizado un entorno conocido como Cantata, proporcionado por Khoros, basado en la conexión de estructuras denominadas glifos a través de las cuales circula un flujo de datos (en nuestro caso, relacionado con el tratamiento de imágenes y vídeo). El presente trabajo adapta dicha estructura a las posibilidades gráficas de Matlab, incorporando, además, funcionalidades adicionales. En primer lugar, se expondrán los métodos de estimación y compensación que han sido programados en la herramienta desarrollada, así como las ventajas e inconvenientes asociados a cada uno de ellos. Dichos métodos de estimación y compensación de movimiento tratan de reducir la información a transmitir aprovechando la redundancia temporal presente entre las imágenes de una secuencia. El objetivo será establecer una correspondencia entre dos imágenes de una secuencia entre las que se ha producido un movimiento, calculando un conjunto de vectores en que representan dicho movimiento. Acto seguido, se describirán las claves de la interfaz gráfica desarrollada. En primer lugar se definirá el entorno gráfico habilitado por Khoros en el cual se ha desarrollado hasta ahora la práctica ya mencionada. Más tarde, introduciremos los aspectos más importantes para la creación de interfaces gráficas en Matlab, y se describirá brevemente una interfaz gráfica desarrollada anteriormente en el Grupo de Tratamiento de Imágenes (GTI) que ha sido tomada como referencia para el presente trabajo. Una vez presentado el entorno gráfico se describirán detalladamente los módulos elaborados para llevar a cabo la estimación y compensación de movimiento, además de otras funciones relacionadas con el tratamiento de imágenes y vídeo y la visualización de resultados. Por último, se propone un nuevo enunciado para la citada práctica, adaptado a la herramienta desarrollada y respetando, hasta donde ha sido posible, la estructura y objetivos docentes del enunciado original.
Resumo:
Resumen basado en el del autor. Resumen en español e inglésîp.122-123
Resumo:
Programa de doctorado: Economía: aplicaciones a las finanzas y seguros, a la economía sectorial, al medio ambiente y a las infraestructuras
Resumo:
Tras el devastador terremoto del 12 de enero de 2010 en Puerto Príncipe, Haití, las autoridades locales, numerosas ONGs y organismos nacionales e internacionales están trabajando en el desarrollo de estrategias para minimizar el elevado riesgo sísmico existente en el país. Para ello es necesario, en primer lugar, estimar dicho riesgo asociado a eventuales terremotos futuros que puedan producirse, evaluando el grado de pérdidas que podrían generar, para dimensionar la catástrofe y actuar en consecuencia, tanto en lo referente a medidas preventivas como a adopción de planes de emergencia. En ese sentido, este Trabajo Fin de Master aporta un análisis detallado del riesgo sísmico asociado a un futuro terremoto que podría producirse con probabilidad razonable, causando importantes daños en Puerto Príncipe. Se propone para ello una metodología de cálculo del riesgo adaptada a los condicionantes de la zona, con modelos calibrados empleando datos del sismo de 2010. Se ha desarrollado en el marco del proyecto de cooperación Sismo-Haití, financiado por la Universidad Politécnica de Madrid, que comenzó diez meses después del terremoto de 2010 como respuesta a una petición de ayuda del gobierno haitiano. El cálculo del riesgo requiere la consideración de dos inputs: la amenaza sísmica o movimiento esperado por el escenario definido (sismo de cierta magnitud y localización) y los elementos expuestos a esta amenaza (una clasificación del parque inmobiliario en diferentes tipologías constructivas, así como su vulnerabilidad). La vulnerabilidad de estas tipologías se describe por medio de funciones de daño: espectros de capacidad, que representan su comportamiento ante las fuerzas horizontales motivadas por los sismos, y curvas de fragilidad, que representan la probabilidad de que las estructuras sufran daños al alcanzar el máximo desplazamiento horizontal entre plantas debido a la mencionada fuerza horizontal. La metodología que se propone especifica determinadas pautas y criterios para estimar el movimiento, asignar la vulnerabilidad y evaluar el daño, cubriendo los tres estados del proceso. Por una parte, se consideran diferentes modelos de movimiento fuerte incluyendo el efecto local, y se identifican los que mejor ajustan a las observaciones de 2010. Por otra se clasifica el parque inmobiliario en diferentes tipologías constructivas, en base a la información extraída en una campaña de campo y utilizando además una base de datos aportada por el Ministerio de Obras Públicas de Haití. Ésta contiene información relevante de todos los edificios de la ciudad, resultando un total de 6 tipologías. Finalmente, para la estimación del daño se aplica el método capacidad-demanda implementado en el programa SELENA (Molina et al., 2010). En primer lugar, utilizado los datos de daño del terremoto de 2010, se ha calibrado el modelo propuesto de cálculo de riesgo sísmico: cuatro modelos de movimiento fuerte, tres modelos de tipo de suelo y un conjunto de funciones de daño. Finalmente, con el modelo calibrado, se ha simulado un escenario sísmico determinista correspondiente a un posible terremoto con epicentro próximo a Puerto Príncipe. Los resultados muestran que los daños estructurales serán considerables y podrán llevar a pérdidas económicas y humanas que causen un gran impacto en el país, lo que pone de manifiesto la alta vulnerabilidad estructural existente. Este resultado será facilitado a las autoridades locales, constituyendo una base sólida para toma de decisiones y adopción de políticas de prevención y mitigación del riesgo. Se recomienda dirigir esfuerzos hacia la reducción de la vulnerabilidad estructural - mediante refuerzo de edificios vulnerables y adopción de una normativa sismorresistente- y hacia el desarrollo de planes de emergencia. Abstract After the devastating 12 January 2010 earthquake that hit the city of Port-au-Prince, Haiti, strategies to minimize the high seismic risk are being developed by local authorities, NGOs, and national and international institutions. Two important tasks to reach this objective are, on the one hand, the evaluation of the seismic risk associated to possible future earthquakes in order to know the dimensions of the catastrophe; on the other hand, the design of preventive measures and emergency plans to minimize the consequences of such events. In this sense, this Master Thesis provides a detailed estimation of the damage that a possible future earthquake will cause in Port-au-Prince. A methodology to calculate the seismic risk is proposed, adapted to the study area conditions. This methodology has been calibrated using data from the 2010 earthquake. It has been conducted in the frame of the Sismo-Haiti cooperative project, supported by the Technical University of Madrid, which started ten months after the 2010 earthquake as an answer to an aid call of the Haitian government. The seismic risk calculation requires two inputs: the seismic hazard (expected ground motion due to a scenario earthquake given by magnitude and location) and the elements exposed to the hazard (classification of the building stock into building typologies, as well as their vulnerability). This vulnerability is described through the damage functions: capacity curves, which represent the structure performance against the horizontal forces caused by the seisms; and fragility curves, which represent the probability of damage as the structure reaches the maximum spectral displacement due to the horizontal force. The proposed methodology specifies certain guidelines and criteria to estimate the ground motion, assign the vulnerability, and evaluate the damage, covering the whole process. Firstly, different ground motion prediction equations including the local effect are considered, and the ones that have the best correlation with the observations of the 2010 earthquake, are identified. Secondly, the classification of building typologies is made by using the information collected during a field campaign, as well as a data base provided by the Ministry of Public Works of Haiti. This data base contains relevant information about all the buildings in the city, leading to a total of 6 different typologies. Finally, the damage is estimated using the capacity-spectrum method as implemented in the software SELENA (Molina et al., 2010). Data about the damage caused by the 2010 earthquake have been used to calibrate the proposed calculation model: different choices of ground motion relationships, soil models, and damage functions. Then, with the calibrated model, a deterministic scenario corresponding to an epicenter close to Port-au-Prince has been simulated. The results show high structural damage, and therefore, they point out the high structural vulnerability in the city. Besides, the economic and human losses associated to the damage would cause a great impact in the country. This result will be provided to the Haitian Government, constituting a scientific base for decision making and for the adoption of measures to prevent and mitigate the seismic risk. It is highly recommended to drive efforts towards the quality control of the new buildings -through reinforcement and construction according to a seismic code- and the development of emergency planning.
Resumo:
Comunicación presentada en el I Congrés Català d’Intel·ligència Artificial, Tarragona, Octubre de 1998.
Resumo:
El acompañante musical de danza (AMD) traduce a sonido secuencias de movimiento, basando su práctica en la observación de las acciones motoras del bailarín. ¿Cómo es que el AMD llega a comprender las calidades motoras en términos musicales? ¿Qué es lo que el AMD identifica a partir de su observación? ¿Cuáles son las diferencias y semejanzas de timing de las representaciones motoras en el planeamiento de una acción cuando se trabaja con estímulos auditivos y visuales en simultáneo? Con el objeto de comenzar a responder algunas de esos interrogantes se diseñó un estudio en el que se indagan diferentes aspectos de la habilidad para sincronizar con la imagen y el sonido de una secuencia de danza de las personas habitualmente involucradas en la realización de este tipo de secuencias (Profesores, Estudiantes Bailarines y AMD).
Resumo:
En este estudio se presenta un modelo de trabajo dentro de una clase de danza, basado en la interacción entre el Acompañante Musical de Danza (AMD), el Bailarín (en su condición de estudiante) y el Profesor de danza. El trabajo tiene un carácter introspectivo y se basa en el análisis crítico de la perspectiva del autor, como sujeto implicado en el proceso de la enseñanza del movimiento, desde la posición de acompañante musical en las clases de técnica de danza. El estudio tiene por marco el trabajo realizado en la Escuela Superior de Danza de Lisboa (ESD). Durante este ensayo nos referiremos al AMD, como aquél que construye, ejecuta y ajusta su performance musical, buscando una correspondencia acentual y de frase, con el movimiento que observa. El problema que abordaremos es el desajuste o ruido en la comunicación que sucede durante las diferentes fases del proceso de aprendizaje y ejecución de la frase de movimiento, entre el AMD, el Bailarín y el Profesor. Será analizada la cuestión de porque los 3 sujetos de este modelo no siempre compatibilizan de manera más adecuada, especulándose que se deba a una serie de problemas o causas en el nivel de la información sensorial y la perspectiva de las interacciones entre ellos. Son propuestas algunas estrategias que (i) optimizan el trabajo del AMD; (ii) hacen posible una mejor comunicación con el alumno; y (iii) permiten ampliar el campo pedagógico al aprendizaje musical del movimiento.
Resumo:
La finalidad de esta investigación es aportar premisas para el diseño y reestructuración de los sistemas de movilidad que lleve a la cualificación del hábitat urbano. Busca identificar factores problemas que son comunes en distintas ciudades de Latinoamérica. La investigación se estructura en 3 etapas: - La primera consiste en el estudio y análisis de casos paradigmáticos en el ámbito nacional e internacional para la conformación de la plataforma teórica de trabajo. - La segunda, tomando como caso de estudio un sector en particular, será vista desde dos miradas: La actual sumada a una futura de carácter propositivo. - La tercera, de síntesis, permitirá establecer pautas para la elaboración de lineamientos para ser aplicables a un sistema de movilidad urbana desde parámetros ambientales.