1000 resultados para Estadística Matemática
Resumo:
Lliçó inaugural del curs 1994/1995. Diplomatura d'estadística
Resumo:
Aquesta exposició vol presentar breument el ventall d'eines disponibles, la terminologia utilitzada i, en general, el marc metodològic de l'estadística exploratoria i de l'analisi de dades, el paradigma de la disciplina.En el decurs dels darrers anys, la disciplina no ha estat pas capgirada, però de tota manera sí que cal una actualització permanent.S'han forjat i provat algunes eines gairebé només esbossades, han aparegut nous dominis d'aplicació. Cal precisar la relació amb els competidors i dinamics veïns (intel·ligencia artificial, xarxes neurals, Data Mining). La perspectiva que presento dels mètodes d'anàlisi de dades emana evidentment d'un punt de vista particular; altres punts de vista poden ser igualment vàlids
Resumo:
La utilización del modelo de regresión lineal en los procesos relacionados con el análisis de datos demanda el conocimiento objetivo e instrumentación de la relación funcional de variables, el coeficiente de determinación y de correlación y la prueba de hipótesis como pilares fundamentales para verificar e interpretar su significancia estadística en el intervalo de confianza determinado. La presentación específica de los temas relacionados con el modelo de regresión lineal, el análisis de regresión, el uso de la ecuación de regresión como instrumento para estimar y predecir y la consideración del análisis de residuales ha sido realizada tomando como referente el estudio de problemas reales definidos en los entornos de la economía, la administración y la salud, utilizando como plataforma de apoyo la hoja de cálculo Excel®. Se consideran en este módulo didáctico, los elementos teóricos correspondientes al análisis de regresión lineal, como técnica estadística empleada para estudiar la relación entre variables determinísticas o aleatorias que resultan de algún tipo de investigación, en la cual se analiza el comportamiento de dos variables, una dependiente y otra independiente. Se muestra mediante la gráfica de dispersión el posible comportamiento de las variables: lineal directa, inversa, no lineal directa o no lineal inversa, con el fin de desarrollar en el lector las competencias interpretativas y propositivas requeridas para dimensionar integralmente la importancia de la estadística inferencial en la vida del profesional en ciencias económicas, administrativas y de la salud.
Resumo:
La utilización del modelo de regresión lineal en los procesos relacionados con el análisis de datos demanda el conocimiento objetivo e instrumentación de la relación funcional de variables, el coeficiente de determinación y de correlación y la prueba de hipótesis como pilares fundamentales para verificar e interpretar su significancia estadística en el intervalo de confianza determinado. La presentación específica de los temas relacionados con el modelo de regresión lineal, el análisis de regresión, el uso de la ecuación de regresión como instrumento para estimar y predecir y la consideración del análisis de residuales ha sido realizada tomando como referente el estudio de problemas reales definidos en los entornos de la economía, la administración y la salud, utilizando como plataforma de apoyo la hoja de cálculo Excel®.
Resumo:
Resumen basado en el del autor
Resumo:
Elaboración de un cuestionario que recoja la respuesta de los alumnos a los distintos aspectos de contenido de las matemáticas en el Primer Ciclo de Educación Primaria. El cuestionario está diseñado como un test de potencia basado en la práctica docente. Recoge las aportaciones de distintos profesionales y tendencias en el proceso didáctico. Pretende identificar carencias de los alumnos en cada uno de los bloques temáticos y tipos de contenido que componen el currículo de matemáticas para el Primer Ciclo de Educación Primaria. El cuestionario se administró a alumnos de la Región de Murcia según la distribución territorial de la Consejería de Educación y Cultura. Una vez en disposición de los datos procedentes de la muestra de 682 alumnos, se procede al análisis de los cuestionarios tomando como punto de partida los supuestos de la Teoría de la Respuesta al Ítem, que es un compendio de modelos matemáticos que tratan de establecer, a partir de una función estadística, la probabilidad de que un sujeto acierte o falle un ítem. No se vincula a teorías sobre la inteligencia sino a problemas técnicos derivados de la construcción de test y a la estadística matemática. Se realiza un análisis factorial exploratorio para comprobar la hipótesis de partida. Al confirmarse, se procede a la realización de los correspondientes estudios de validez y a la confección de la ficha técnica del cuestionario. La hipótesis formulada partía de que la competencia matemática se estructura de forma multifactorial con factores ligados a aspectos numéricos, componentes heurísticos y a aspectos reacionados con la organización espacio-temporal.. Se ha realizado un Análisis de Componentes Principales con la finalidad de determinar el número de componentes que pueden explicar mayoritariamente la covariación entre los items. Los tres componentes encontrados son: el componente operativo, que hace referencia a las competencias en el manejo de algoritmos y la aplicación de los mismos en la solución de problemas. El componente estimativo, que hace referencia a las competencias en estimación y medida, así como a la localización mediante posiciones relativas y reconocimiento de formas y figuras y el componente de dominio local que hace referencia a las competencias en el manejo del valor posicional de las cifras de un número en lo referente al dominio de la semirecta de los números naturales. A la vista de los resultados, la competencia matemática se expresa en función de las componentes señaladas. El autor presenta aportaciones psicopedagógicas para la didáctica de las matemáticas en el Primer Ciclo de Educación Primaria, que se derivan de los resultados de su investigación..
Resumo:
The amalgamation operation is frequently used to reduce the number of parts of compositional data but it is a non-linear operation in the simplex with the usual geometry,the Aitchison geometry. The concept of balances between groups, a particular coordinate system designed over binary partitions of the parts, could be an alternative to theamalgamation in some cases. In this work we discuss the proper application of bothconcepts using a real data set corresponding to behavioral measures of pregnant sows
Resumo:
Planners in public and private institutions would like coherent forecasts of the components of age-specic mortality, such as causes of death. This has been di cult toachieve because the relative values of the forecast components often fail to behave ina way that is coherent with historical experience. In addition, when the group forecasts are combined the result is often incompatible with an all-groups forecast. It hasbeen shown that cause-specic mortality forecasts are pessimistic when compared withall-cause forecasts (Wilmoth, 1995). This paper abandons the conventional approachof using log mortality rates and forecasts the density of deaths in the life table. Sincethese values obey a unit sum constraint for both conventional single-decrement life tables (only one absorbing state) and multiple-decrement tables (more than one absorbingstate), they are intrinsically relative rather than absolute values across decrements aswell as ages. Using the methods of Compositional Data Analysis pioneered by Aitchison(1986), death densities are transformed into the real space so that the full range of multivariate statistics can be applied, then back-transformed to positive values so that theunit sum constraint is honoured. The structure of the best-known, single-decrementmortality-rate forecasting model, devised by Lee and Carter (1992), is expressed incompositional form and the results from the two models are compared. The compositional model is extended to a multiple-decrement form and used to forecast mortalityby cause of death for Japan
Resumo:
The preceding two editions of CoDaWork included talks on the possible considerationof densities as infinite compositions: Egozcue and D´ıaz-Barrero (2003) extended theEuclidean structure of the simplex to a Hilbert space structure of the set of densitieswithin a bounded interval, and van den Boogaart (2005) generalized this to the setof densities bounded by an arbitrary reference density. From the many variations ofthe Hilbert structures available, we work with three cases. For bounded variables, abasis derived from Legendre polynomials is used. For variables with a lower bound, westandardize them with respect to an exponential distribution and express their densitiesas coordinates in a basis derived from Laguerre polynomials. Finally, for unboundedvariables, a normal distribution is used as reference, and coordinates are obtained withrespect to a Hermite-polynomials-based basis.To get the coordinates, several approaches can be considered. A numerical accuracyproblem occurs if one estimates the coordinates directly by using discretized scalarproducts. Thus we propose to use a weighted linear regression approach, where all k-order polynomials are used as predictand variables and weights are proportional to thereference density. Finally, for the case of 2-order Hermite polinomials (normal reference)and 1-order Laguerre polinomials (exponential), one can also derive the coordinatesfrom their relationships to the classical mean and variance.Apart of these theoretical issues, this contribution focuses on the application of thistheory to two main problems in sedimentary geology: the comparison of several grainsize distributions, and the comparison among different rocks of the empirical distribution of a property measured on a batch of individual grains from the same rock orsediment, like their composition
Resumo:
A novel metric comparison of the appendicular skeleton (fore and hind limb) ofdifferent vertebrates using the Compositional Data Analysis (CDA) methodologicalapproach it’s presented.355 specimens belonging in various taxa of Dinosauria (Sauropodomorpha, Theropoda,Ornithischia and Aves) and Mammalia (Prothotheria, Metatheria and Eutheria) wereanalyzed with CDA.A special focus has been put on Sauropodomorpha dinosaurs and the Aitchinsondistance has been used as a measure of disparity in limb elements proportions to infersome aspects of functional morphology
Resumo:
Factor analysis as frequent technique for multivariate data inspection is widely used also for compositional data analysis. The usual way is to use a centered logratio (clr)transformation to obtain the random vector y of dimension D. The factor model istheny = Λf + e (1)with the factors f of dimension k & D, the error term e, and the loadings matrix Λ.Using the usual model assumptions (see, e.g., Basilevsky, 1994), the factor analysismodel (1) can be written asCov(y) = ΛΛT + ψ (2)where ψ = Cov(e) has a diagonal form. The diagonal elements of ψ as well as theloadings matrix Λ are estimated from an estimation of Cov(y).Given observed clr transformed data Y as realizations of the random vectory. Outliers or deviations from the idealized model assumptions of factor analysiscan severely effect the parameter estimation. As a way out, robust estimation ofthe covariance matrix of Y will lead to robust estimates of Λ and ψ in (2), seePison et al. (2003). Well known robust covariance estimators with good statisticalproperties, like the MCD or the S-estimators (see, e.g. Maronna et al., 2006), relyon a full-rank data matrix Y which is not the case for clr transformed data (see,e.g., Aitchison, 1986).The isometric logratio (ilr) transformation (Egozcue et al., 2003) solves thissingularity problem. The data matrix Y is transformed to a matrix Z by usingan orthonormal basis of lower dimension. Using the ilr transformed data, a robustcovariance matrix C(Z) can be estimated. The result can be back-transformed tothe clr space byC(Y ) = V C(Z)V Twhere the matrix V with orthonormal columns comes from the relation betweenthe clr and the ilr transformation. Now the parameters in the model (2) can beestimated (Basilevsky, 1994) and the results have a direct interpretation since thelinks to the original variables are still preserved.The above procedure will be applied to data from geochemistry. Our specialinterest is on comparing the results with those of Reimann et al. (2002) for the Kolaproject data
Resumo:
Observations in daily practice are sometimes registered as positive values larger then a given threshold α. The sample space is in this case the interval (α,+∞), α & 0, which can be structured as a real Euclidean space in different ways. This fact opens the door to alternative statistical models depending not only on the assumed distribution function, but also on the metric which is considered as appropriate, i.e. the way differences are measured, and thus variability
Resumo:
This paper is a first draft of the principle of statistical modelling on coordinates. Several causes —which would be long to detail—have led to this situation close to the deadline for submitting papers to CODAWORK’03. The main of them is the fast development of the approach along thelast months, which let appear previous drafts as obsolete. The present paper contains the essential parts of the state of the art of this approach from my point of view. I would like to acknowledge many clarifying discussions with the group of people working in this field in Girona, Barcelona, Carrick Castle, Firenze, Berlin, G¨ottingen, and Freiberg. They have given a lot of suggestions and ideas. Nevertheless, there might be still errors or unclear aspects which are exclusively my fault. I hope this contribution serves as a basis for further discussions and new developments
Resumo:
The biplot has proved to be a powerful descriptive and analytical tool in many areasof applications of statistics. For compositional data the necessary theoreticaladaptation has been provided, with illustrative applications, by Aitchison (1990) andAitchison and Greenacre (2002). These papers were restricted to the interpretation ofsimple compositional data sets. In many situations the problem has to be described insome form of conditional modelling. For example, in a clinical trial where interest isin how patients’ steroid metabolite compositions may change as a result of differenttreatment regimes, interest is in relating the compositions after treatment to thecompositions before treatment and the nature of the treatments applied. To study thisthrough a biplot technique requires the development of some form of conditionalcompositional biplot. This is the purpose of this paper. We choose as a motivatingapplication an analysis of the 1992 US President ial Election, where interest may be inhow the three-part composition, the percentage division among the three candidates -Bush, Clinton and Perot - of the presidential vote in each state, depends on the ethniccomposition and on the urban-rural composition of the state. The methodology ofconditional compositional biplots is first developed and a detailed interpretation of the1992 US Presidential Election provided. We use a second application involving theconditional variability of tektite mineral compositions with respect to major oxidecompositions to demonstrate some hazards of simplistic interpretation of biplots.Finally we conjecture on further possible applications of conditional compositionalbiplots
Resumo:
The use of orthonormal coordinates in the simplex and, particularly, balance coordinates, has suggested the use of a dendrogram for the exploratory analysis of compositional data. The dendrogram is based on a sequential binary partition of a compositional vector into groups of parts. At each step of a partition, one group of parts isdivided into two new groups, and a balancing axis in the simplex between both groupsis defined. The set of balancing axes constitutes an orthonormal basis, and the projections of the sample on them are orthogonal coordinates. They can be represented in adendrogram-like graph showing: (a) the way of grouping parts of the compositional vector; (b) the explanatory role of each subcomposition generated in the partition process;(c) the decomposition of the total variance into balance components associated witheach binary partition; (d) a box-plot of each balance. This representation is useful tohelp the interpretation of balance coordinates; to identify which are the most explanatory coordinates; and to describe the whole sample in a single diagram independentlyof the number of parts of the sample