10 resultados para Espinafre
Resumo:
A necessidade de fazer com que haja um aumento no consumo de hortaliças se faz crescente no mundo inteiro, isso porque esta é uma fonte rica em micronutrientes e macronutrientes, além de não agregar muito valor calórico na dieta e ser um alimento acessível para todas as classes econômicas. Entretanto, no Brasil, é verificado que a porcentagem da população que consome diariamente o recomendado de hortaliças e frutas ainda não atingiu o ideal para que se possa obter os benefícios trazidos do consumo, como a prevenção de algumas doenças não transmissíveis, através da dieta. Por isso, a necessidade de se estudar maneiras diferentes de cozimento das hortaliças, para que se torne possível preparar os vegetais de maneiras diferentes e torná-los mais atrativos, garantindo a melhor forma de fazê-los, para que se escolha o tratamento que melhor conserva o conteúdo de compostos bioativos. Para esse estudo foram considerados dois vegetais de grande importância, o espinafre (SpinaciaoleraceaL.) e a chicória (ChicoriumintybusL.), que foram submetidos a quatro tratamentos de cozimentos dististintos, a 100°C, no vapor, no microondas e no óleo, para cada tratamento foi avaliado parâmetros de cor, análise de sólidos solúveis totais, acidez titulável, determinação de ácido ascórbico, determinação de fenólicos e flavonoides totais, avaliação da atividade sequestrante de radicais livres (DPPH e ABTS) e carotenoides. Os resultados obtidos foram bastante diversificados, ou seja, para cada teste desenvolvido houve uma retenção maior do composto bioativo estudado em determinado cozimento preparado, entretanto o tratamento realizado a 100°C foi o tratamento que obteve menor retenção dos compostos bioativos entre os testes realizados.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Assessment of the physiological potential of spinach seeds (Tetragonia tetragonoides (Pall.) Kuntze)
Resumo:
The efficiency of vigor tests in assessing the physiological potential of seeds depends on their standardization for different species. In this context, the research aimed to study specific methodologies to evaluate the vigor of spinach seeds (Tetragonia tetragonoides). For this purpose, five lots of spinach seed cv. New Zealand were submitted to germination, first count of germination, seedling emergence in the field, accelerated aging (with and without use of saturated solution of NaCl at 41and 45 ºC for 24,48 and 72 hours), controlled deterioration (18,21 and 24% seed water content adjustments for 24 hours at 45 ºC) and electrical conductivity tests with variations inwater volume (25, 50 and 75 mL), seed quantity (25 and 50) and soaking period (1, 2, 4, 8,12, 16 and 24 hours) at 25 ºC. The first count test allowed obtaining preliminary information about seed vigor, and other tests in general showed similarity with seedling emergence in the field. Thus, it was concluded that traditional accelerated aging test 24 h /41 ºC and accelerated aging test with saturated salt solution for 24 h at 41 ºC and 45 ºC, and controlled deterioration test with 21% seed water content / 24 h / 45 ºC were all efficient for evaluating the physiological potential of spinach seeds.
Resumo:
Pós-graduação em Ciência Animal - FMVA
Resumo:
Introduction: skeletal muscles are dynamic tissue that can change their phenotypic characteristics providing a better functional adaptation to different stimuli. L-thyroxine is a hormone produced by the thyroid gland and has been used as an experimental model for stimulation of oxidative stress in skeletal muscle. Coenzyme Q10 (CoQ10) is a fat-soluble provitamin endogenously synthesized and found naturally in foods such red meat, fish, cereals, broccoli and spinach. It has antioxidant properties and potential in the treatment of degenerative and neuromuscular diseases. Objective: to evaluate the protective effect of CoQ10 in the soleus muscle of rats against the oxidative damage caused by L-thyroxine. Methods: the rats were divided in four groups of six animals each: Group 1 (control); Group 2 (coenzyme Q10); Group 3 (L-thyroxine), and Group 4 coenzyme Q10 and L-thyroxine). After euthanasia, blood was collected and serum activity of the enzymes creatine kinase (CK) and aspartate aminotransferase (AST) was analyzed. In the soleus muscle homogenates the factors related to oxidative stress were assessed. Results: CoQ10 protected the soleus muscle against the damage caused by L-thyroxine and favored the maintenance of the antioxidant enzymes glutathione reductase and glutathione peroxidase, the concentration of decreased and oxidized glutathione, and prevented lipid peroxidation. Conclusion: the results indicate that CoQ10 protects rat soleus muscle from oxidative damage caused by L-thyroxine.
Resumo:
The effects of plant density and the number of emitters per Styrofoam box on plant growth and nitrate (NO3-) concentration were evaluated in spinach (Spinacia oleracea L. cv. Tapir). Spinach seedlings were transplanted at 45 days after emergence into Styrofoam boxes filled with the substrate and were grown during winter in an unheated greenhouse with no supplemental lighting. The experiment was carried out with four treatments, including two plant densities (160 and 280 plants/m2) and two number of emitters per Styrofoam box (4 and 8 emitters). Each planting box was irrigated daily and fertigated with a complete nutrient solution. Shoot dry weight was not affected by plant density. However, yield increased with plant density and emitter number. Leaf-blade NO3- concentration was not affected by the interaction between plant density and number of emitters, but petioles NO3- concentration was greater in treatment with 160 plants/m2 and 8 emitters. Although leaf-blade NO3- concentration was not affected by plant density, it decreased with the number of emitters. On the other hand, petiole NO3- concentration was not affected by plant density or number of emitters. Leaf-blade NO3- concentration ranged from 3.2 to 4.1 mg/g fresh weight, occurring the highest value in the treatment with 280 plants/m2 and 4 emitters. Petiole NO3- concentration ranged from 3.5 to 5.3 mg/g fresh weight, values that were higher than allowed by EU regulation.
Resumo:
Abstract The effects of three commercial substrates (a mixture of forest residues, composted grape husks, and white peat, black peat and coir) on plant growth and nitrogen (N) and nitrate (NO3) concentration and content were evaluated in spinach (Spinacia oleracea L. cv. Tapir). Spinach seedlings were transplanted at 45 days after emergence into Styrofoam boxes filled with the substrates and were grown during winter and early spring in an unheated greenhouse with no supplemental lighting. Each planting box was irrigated daily by drip and fertilized with a complete nutrient solution. The NO3 content of the drainage water was lower in coir than in the other substrates. However, shoot NO3 concentration was not affected by substrate type, while yield and total shoot N and NO3 content were greater when plants were grown in peat than in the mixed substrate or the coir. Leaf chlorophyll meter readings provided a good indication of the amount of N in the plants and increased linearly with total shoot N. Keywords Spinacia oleracea; chlorophyll meter; coir; peat; soilless culture systems