966 resultados para Esclerose mesial temporal
Resumo:
Introdução: A esclerose mesial temporal (EMT) é a principal causa de epilepsia resistente ao tratamento medicamentoso. Pacientes com EMT apresentam dificuldades no processamento semântico e fonológico de linguagem e maior incidência de reorganização cerebral da linguagem (bilateral ou à direita) em relação à população geral. A ressonância magnética funcional (RMf) permite avaliar a reorganização cerebral das redes de linguagem, comparando padrões de ativação cerebral entre diversas regiões cerebrais. Objetivo: Investigar o desempenho linguístico de pacientes com EMT unilateral esquerda e direita e a ocorrência de reorganização das redes de linguagem com RMf para avaliar se a reorganização foi benéfica para a linguagem nestes pacientes. Métodos: Utilizamos provas clínicas de linguagem e paradigmas de nomeação visual e responsiva para RMf, desenvolvidos para este estudo. Foram avaliados 24 pacientes com EMTe, 22 pacientes com EMTd e 24 controles saudáveis, submetidos a provas de linguagem (fluência semântica e fonológica, nomeação de objetos, verbos, nomes próprios e responsiva, e compreensão de palavras) e a três paradigmas de linguagem por RMf [nomeação por confrontação visual (NCV), nomeação responsiva à leitura (NRL) e geração de palavras (GP)]. Seis regiões cerebrais de interesse (ROI) foram selecionadas (giro frontal inferior, giro frontal médio, giro frontal superior, giro temporal inferior, giro temporal médio e giro temporal superior). Índices de Lateralidade (ILs) foram calculados com dois métodos: bootstrap, do programa LI-Toolbox, independe de limiar, e PSC, que indica a intensidade da ativação cerebral de cada voxel. Cada grupo de pacientes (EMTe e EMTd) foi dividido em dois subgrupos, de acordo com o desempenho em relação aos controles na avaliação clinica de linguagem. O <= -1,5 foi utilizado como nota de corte para dividir os grupos em pacientes com bom e com mau desempenho de linguagem. Em seguida, comparou-se o desempenho linguístico dos subgrupos ao índices IL-boot. Resultados: Pacientes com EMT esquerda e direita mostraram pior desempenho que controles nas provas clínicas de nomeação de verbos, nomeação de nomes próprios, nomeação responsiva e fluência verbal. Os mapas de ativação cerebral por RMf mostraram efeito BOLD em regiões frontais e temporoparietais de linguagem. Os mapas de comparação de ativação cerebral entre os grupos revelaram que pacientes com EMT esquerda e direita apresentam maior ativação em regiões homólogas do hemisfério direito em relação aos controles. Os ILs corroboraram estes resultados, mostrando valores médios menores para os pacientes em relação aos controles e, portanto, maior simetria na representação da linguagem. A comparação entre o IL-boot e o desempenho nas provas clínicas de linguagem indicou que, no paradigma de nomeação responsiva à leitura, a reorganização funcional no giro temporal médio, e possivelmente, nos giros temporal inferior e superior associou-se a desempenho preservado em provas de nomeação. Conclusão: Pacientes com EMT direita e esquerda apresentam comprometimento de nomeação e fluência verbal e reorganização da rede cerebral de linguagem. A reorganização funcional de linguagem em regiões temporais, especialmente o giro temporal médio associou-se a desempenho preservado em provas de nomeação em pacientes com EMT esquerda no paradigma de RMf de nomeação responsiva à leitura
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Seizures and interictal spikes in mesial temporal lobe epilepsy (MTLE) affect a network of brain regions rather than a single epileptic focus. Simultaneous electroencephalography and functional magnetic resonance imaging (EEG-fMRI) studies have demonstrated a functional network in which hemodynamic changes are time-locked to spikes. However, whether this reflects the propagation of neuronal activity from a focus, or conversely the activation of a network linked to spike generation remains unknown. The functional connectivity (FC) changes prior to spikes may provide information about the connectivity changes that lead to the generation of spikes. We used EEG-fMRI to investigate FC changes immediately prior to the appearance of interictal spikes on EEG in patients with MTLE. Methods/principal findings: Fifteen patients with MTLE underwent continuous EEG-fMRI during rest. Spikes were identified on EEG and three 10 s epochs were defined relative to spike onset: spike (0–10 s), pre-spike (−10 to 0 s), and rest (−20 to −10 s, with no previous spikes in the preceding 45s). Significant spike-related activation in the hippocampus ipsilateral to the seizure focus was found compared to the pre-spike and rest epochs. The peak voxel within the hippocampus ipsilateral to the seizure focus was used as a seed region for FC analysis in the three conditions. A significant change in FC patterns was observed before the appearance of electrographic spikes. Specifically, there was significant loss of coherence between both hippocampi during the pre-spike period compared to spike and rest states. Conclusion/significance: In keeping with previous findings of abnormal inter-hemispheric hippocampal connectivity in MTLE, our findings specifically link reduced connectivity to the period immediately before spikes. This brief decoupling is consistent with a deficit in mutual (inter-hemispheric) hippocampal inhibition that may predispose to spike generation.
Resumo:
A epilepsia do lobo temporal (ELT) é a principal forma de epilepsia, e a principal lesão desenvolvida por pacientes com ELT é a esclerose mesial temporal (EMT) apresentando perda neuronal, gliose e atrofia da região do hipocampo. Os íons cálcio são fundamentais para o funcionamento de inúmeras vias metabólicas em todos os níveis fisiológicos e desempenham papel fundamental nas respostas de despolarização neuronal. Foi comprovado que a ativação tanto de receptores ionotrópicos quanto metabotrópicos de glutamato promove o influxo anormal de Ca2+ para o meio intracelular, potencializando o efeito de excitação associado à EMT. O cálcio atua tanto como mensageiro celular secundário, quanto primário através da interação com um receptor específico na superfície celular, o Receptor Sensor de Cálcio (CASR). O CASR é expresso em diversas regiões do cérebro, incluindo o hipocampo, no entanto são desconhecidas muitas das possíveis funções desempenhadas por este receptor no cérebro. Ele pertence à família de receptores acoplados a proteína-G, e exibe homologia significativa com os receptores metabotrópicos de glutamato (mGluRs). Ademais, os mGluRs regulam a expressão da família de proteínas ligantes de cálcio neuronal, da qual faz parte a proteína VILIP-1, associada especificamente com o fenômeno da plasticidade sináptica no cérebro. O objetivo deste projeto foi determinar a expressão das proteínas CASR, mGluR1 e VILIP-1 em tecidos de hipocampo de pacientes com epilepsia do lobo temporal comparando com a expressão de tecidos de indivíduos normais. Os três genes encontraram-se subexpressos nos tecidos de pacientes com ELT, sendo que os tecidos dos pacientes, em grau crônico da doença, justificam tais graus de expressão. Sugere-se uma possível interação entre CASR e mGluR1 e...(Resumo completo, clicar acesso eletrônico abaixo)
Resumo:
Temporal lobe epilepsy (TLE) is the most common form of partial epilepsy and affects 40% of the patients. Seizures arising from the mesial temporal lobe structures (i.e., amygdala and hippocampus) are common, whereas neocortical seizures are rare. In recent years, many studies aimed to identify the pattern of gene expression of neurotransmitters involved in molecular mechanisms of epilepsy. We used real-time PCR to quantify the expression of GABAA (subunits a1, beta 1, beta 2) and NMDA (subunits NR1, NR2A, and NR2B) receptor genes in amygdalae of 27 patients with TLE and 14 amygdalae from autopsy controls. The NR1 subunit was increased in patients with epilepsy when compared with controls. No differences were found in expression of NMDA subunits NR2A and NR2B or in a1, beta 1, and beta 2 subunits of GABAA receptors. Our results suggest that the NR1 subunit of NMDA receptors is involved in the amygdala hyperexcitability in some of the patients with TLE. (C) 2010 Wiley Periodicals, Inc., Inc.
Resumo:
A computational pipeline combining texture analysis and pattern classification algorithms was developed for investigating associations between high-resolution MRI features and histological data. This methodology was tested in the study of dentate gyrus images of sclerotic hippocampi resected from refractory epilepsy patients. Images were acquired using a simple surface coil in a 3.0T MRI scanner. All specimens were subsequently submitted to histological semiquantitative evaluation. The computational pipeline was applied for classifying pixels according to: a) dentate gyrus histological parameters and b) patients' febrile or afebrile initial precipitating insult history. The pipeline results for febrile and afebrile patients achieved 70% classification accuracy, with 78% sensitivity and 80% specificity [area under the reader observer characteristics (ROC) curve: 0.89]. The analysis of the histological data alone was not sufficient to achieve significant power to separate febrile and afebrile groups. Interesting enough, the results from our approach did not show significant correlation with histological parameters (which per se were not enough to classify patient groups). These results showed the potential of adding computational texture analysis together with classification methods for detecting subtle MRI signal differences, a method sufficient to provide good clinical classification. A wide range of applications of this pipeline can also be used in other areas of medical imaging. Magn Reson Med, 2012. (c) 2012 Wiley Periodicals, Inc.
Resumo:
Neurocysticercosis (NCC) and mesial temporal lobe epilepsy associated with hippocampal sclerosis (MTLE-HS) are two common worldwide forms of focal epilepsy. In regions where NCC is endemic, both diseases can be observed in the same patient. There is recent and growing evidence suggesting that NCC might contribute to or even cause MTLE-HS. In this article, we review the literature regarding NCC and temporal lobe epilepsy, specifically addressing the relationship between NCC and MTLE-HS. In addition, we review some scenarios where NCC seems to emerge as a causative agent or contributor to the development of MTLE-HS in some patients. This association is important because it may have an impact on the evaluation and treatment of a sizable proportion of patients with epilepsy. Insights from these clinical observations might also contribute to the understanding of the neurobiology of both NCC and MTLE-HS. We hope that our review might shed some light on this interesting interplay between two of the most common worldwide conditions associated with human focal epilepsy.
Resumo:
Pathology studies in epilepsy patients bring useful information for comprehending the physiopathology of various forms of epilepsy, as well as aspects related to response to treatment and long-term prognosis. These studies are usually restricted to surgical specimens obtained from patients with refractory focal epilepsies. Therefore, most of them pertain to temporal lobe epilepsy (TLE) with mesial temporal sclerosis (MTS) and malformations of cortical development (MCD), thus providing information of a selected group of patients and restricted regions of the brain. Postmortem whole brain studies are rarely performed in epilepsy patients, however they may provide extensive information on brain pathology, allowing the analysis of areas beyond the putative epileptogenic zone. In this article, we reviewed pathology studies performed in epilepsy patients with emphasis on neuropathological findings in TLE with MTS and MCD. Furthermore, we reviewed data from postmortem studies and discussed the importance of performing these studies in epilepsy populations.
Resumo:
Focal onset epilepsies most often occur in the temporal lobes. To improve diagnosis and therapy of patients suffering from pharmacoresistant temporal lobe epilepsy it is highly important to better understand the underlying functional and structural networks. In mesial temporal lobe epilepsy (MTLE) widespread functional networks are involved in seizure generation and propagation. In this study we have analyzed the spatial distribution of hemodynamic correlates (HC) to interictal epileptiform discharges on simultaneous EEG/fMRI recordings and relative grey matter volume (rGMV) reductions in 10 patients with MTLE. HC occurred beyond the seizure onset zone in the hippocampus, in the ipsilateral insular/operculum, temporo-polar and lateral neocortex, cerebellum, along the central sulcus and bilaterally in the cingulate gyrus. rGMV reductions were detected in the middle temporal gyrus, inferior temporal gyrus and uncus to the hippocampus, the insula, the posterior cingulate and the anterior lobe of the cerebellum. Overlaps between HC and decreased rGMV were detected along the mesolimbic network ipsilateral to the seizure onset zone. We conclude that interictal epileptic activity in MTLE induces widespread metabolic changes in functional networks involved in MTLE seizure activity. These functional networks are spatially overlapping with areas that show a reduction in relative grey matter volumes.
Resumo:
PURPOSE To study the clinical outcome in hippocampal deep brain stimulation (DBS) for the treatment of patients with refractory mesial temporal lobe epilepsy (MTLE) according to the electrode location. METHODS Eight MTLE patients implanted in the hippocampus and stimulated with high-frequency DBS were included in this study. Five underwent invasive recordings with depth electrodes to localize ictal onset zone prior to chronic DBS. Position of the active contacts of the electrode was calculated on postoperative imaging. The distances to the ictal onset zone were measured as well as atlas-based hippocampus structures impacted by stimulation were identified. Both were correlated with seizure frequency reduction. RESULTS The distances between active electrode location and estimated ictal onset zone were 11±4.3 or 9.1±2.3mm for patients with a >50% or <50% reduction in seizure frequency. In patients (N=6) showing a >50% seizure frequency reduction, 100% had the active contacts located <3mm from the subiculum (p<0.05). The 2 non-responders patients were stimulated on contacts located >3mm to the subiculum. CONCLUSION Decrease of epileptogenic activity induced by hippocampal DBS in refractory MTLE: (1) seems not directly associated with the vicinity of active electrode to the ictal focus determined by invasive recordings; (2) might be obtained through the neuromodulation of the subiculum.
Resumo:
Tese de mestrado, Ciências do Sono, Faculdade de Medicina, Universidade de Lisboa, 2016
Resumo:
Epilepsies are neurological disorders characterized by recurrent and spontaneous seizures due to an abnormal electric activity in a brain network. The mesial temporal lobe epilepsy (MTLE) is the most prevalent type of epilepsy in adulthood, and it occurs frequently in association with hippocampal sclerosis. Unfortunately, not all patients benefit from pharmacological treatment (drug-resistant patients), and therefore become candidates for surgery, a procedure of high complexity and cost. Nowadays, the most common surgery is the anterior temporal lobectomy with selective amygdalohippocampectomy, a procedure standardized by anatomical markers. However, part of patients still present seizure after the procedure. Then, to increase the efficiency of this kind of procedure, it is fundamental to know the epileptic human brain in order to create new tools for auxiliary an individualized surgery procedure. The aim of this work was to identify and quantify the occurrence of epilepticform activity -such as interictal spikes (IS) and high frequency oscillations (HFO) - in electrocorticographic (ECoG) signals acutely recorded during the surgery procedure in drug-resistant patients with MTLE. The ECoG recording (32 channels at sample rate of 1 kHz) was performed in the surface of temporal lobe in three moments: without any cortical resection, after anterior temporal lobectomy and after amygdalohippocampectomy (mean duration of each record: 10 min; N = 17 patients; ethic approval #1038/03 in Research Ethic Committee of Federal University of São Paulo). The occurrence of IS and HFO was quantified automatically by MATLAB routines and validated manually. The events rate (number of events/channels) in each recording time was correlated with seizure control outcome. In 8 hours and 40 minutes of record, we identified 36,858 IS and 1.756 HFO. We observed that seizure-free outcome patients had more HFO rate before the resection than non-seizure free, however do not differentiate in relation of frequency, morphology and distribution of IS. The HFO rate in the first record was better than IS rate on prediction of seizure-free patients (IS: AUC = 57%, Sens = 70%, Spec = 71% vs HFO: AUC = 77%, Sens = 100%, Spec = 70%). We observed the same for the difference of the rate of pre and post-resection (IS: AUC = 54%, Sens = 60%, Spec = 71%; vs HFO: AUC = 84%, Sens = 100%, Spec = 80%). In this case, the algorithm identifies all seizure-free patients (N = 7) with two false positives. To conclude, we observed that the IS and HFO can be found in intra-operative ECoG record, despite the anesthesia and the short time of record. The possibility to classify the patients before any cortical resection suggest that ECoG can be important to decide the use of adjuvant pharmacological treatment or to change for tailored resection procedure. The mechanism responsible for this effect is still unknown, thus more studies are necessary to clarify the processes related to it
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In the central nervous system, zinc is released along with glutamate during neurotransmission and, in excess, can promote neuronal death. Experimental studies have shown that metallothioneins I/II (MT-I/II), which chelate free zinc, can affect seizures and reduce neuronal death after status epilepticus. Our aim was to evaluate the expression of MT-I/II in the hippocampus of patients with temporal lobe epilepsy (TLE). Hippocampi from patients with pharmacoresistant mesial temporal lobe epilepsy (MTLE) and patients with TLE associated with tumor or dysplasia (TLE-TD) were evaluated for expression of MT-I/II, for the vesicular zinc levels, and for neuronal, astroglial, and microglial populations. Compared to control cases, MTLE group displayed widespread increase in MT-I/II expression, astrogliosis, microgliosis and reduced neuronal population. In TLE-TD, the same changes were observed, except that were mainly confined to fascia dentata. Increased vesicular zinc was observed only in the inner molecular layer of MTLE patients, when compared to control cases. Correlation and linear regression analyses indicated an association between increased MT-I/II and increased astrogliosis in TLE. MT-I/II levels did not correlate with any clinical variables, but MTLE patients with secondary generalized seizures (SGS) had less MT-I/II than MTLE patients without SGS. In conclusion, MT-I/II expression was increased in hippocampi from TLE patients and our data suggest that it is associated with astrogliosis and may be associated with different seizure spread patterns.
Resumo:
Clinical and experimental evidence indicates that inflammatory processes contribute to the pathophysiology of epilepsy, but underlying mechanisms remain mostly unknown. Using immunohistochemistry for CD45 (common leukocyte antigen) and CD3 (T-lymphocytes), we show here microglial activation and infiltration of leukocytes in sclerotic tissue from patients with mesial temporal lobe epilepsy (TLE), as well as in a model of TLE (intrahippocampal kainic acid injection), characterized by spontaneous, nonconvulsive focal seizures. Using specific markers of lymphocytes, microglia, macrophages, and neutrophils in kainate-treated mice, we investigated with pharmacological and genetic approaches the contribution of innate and adaptive immunity to kainate-induced inflammation and neurodegeneration. Furthermore, we used EEG analysis in mutant mice lacking specific subsets of lymphocytes to explore the significance of inflammatory processes for epileptogenesis. Blood-brain barrier disruption and neurodegeneration in the kainate-lesioned hippocampus were accompanied by sustained ICAM-1 upregulation, microglial cell activation, and infiltration of CD3(+) T-cells. Moreover, macrophage infiltration was observed, selectively in the dentate gyrus where prominent granule cell dispersion was evident. Unexpectedly, depletion of peripheral macrophages by systemic clodronate liposome administration affected granule cell survival. Neurodegeneration was aggravated in kainate-lesioned mice lacking T- and B-cells (RAG1-knock-out), because of delayed invasion by Gr-1(+) neutrophils. Most strikingly, these mutant mice exhibited early onset of spontaneous recurrent seizures, suggesting a strong impact of immune-mediated responses on network excitability. Together, the concerted action of adaptive and innate immunity triggered locally by intrahippocampal kainate injection contributes seizure-suppressant and neuroprotective effects, shedding new light on neuroimmune interactions in temporal lobe epilepsy.