234 resultados para Eschatological opponent


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Syriac Apocalypse of Daniel (Syr Apoc Dan), a Christian apocalypse from the seventh century of Common Era, is clearly tributary to the canonical book of Daniel (Dn). In its turn, Dn provided the figure of an eschatological opponent who was re-signified in Christianity: the Antichrist. The cosmic dimensions of the malevolent character of oppressive tyrant of Dn - his arrogance against the gods, the abomination of desolation, military conquests and persecutions of the saints, the change of the cosmic order, the time of the reign and death of the tyrant - are considered in this work compared with the Antichrist of the Syr Apoc Dan

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Syriac Apocalypse of Daniel (Syr Apoc Dan), a Christian apocalypse from the seventh century of Common Era, is clearly tributary to the canonical book of Daniel (Dn). In its turn, Dn provided the figure of an eschatological opponent who was re-signified in Christianity: the Antichrist. The cosmic dimensions of the malevolent character of oppressive tyrant of Dn - his arrogance against the gods, the abomination of desolation, military conquests and persecutions of the saints, the change of the cosmic order, the time of the reign and death of the tyrant - are considered in this work compared with the Antichrist of the Syr Apoc Dan

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Syriac Apocalypse of Daniel (Syr Apoc Dan), a Christian apocalypse from the seventh century of Common Era, is clearly tributary to the canonical book of Daniel (Dn). In its turn, Dn provided the figure of an eschatological opponent who was re-signified in Christianity: the Antichrist. The cosmic dimensions of the malevolent character of oppressive tyrant of Dn - his arrogance against the gods, the abomination of desolation, military conquests and persecutions of the saints, the change of the cosmic order, the time of the reign and death of the tyrant - are considered in this work compared with the Antichrist of the Syr Apoc Dan

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a study designed to understand player responses to artificially intelligent opponents in multi-player First Person Shooter games. It examines the player's ability to tell the difference between artificially intelligent opponents and other human players, and investigates the players' perceptions of these opponents. The study examines player preferences in this regard and identifies the significance of the cues and signs players use to categorise an opponent as artificial or human.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our aim was to make a quantitative comparison of the response of the different visual cortical areas to selective stimulation of the two different cone-opponent pathways [long- and medium-wavelength (L/M)- and short-wavelength (S)-cone-opponent] and the achromatic pathway under equivalent conditions. The appropriate stimulus-contrast metric for the comparison of colour and achromatic sensitivity is unknown, however, and so a secondary aim was to investigate whether equivalent fMRI responses of each cortical area are predicted by stimulus contrast matched in multiples of detection threshold that approximately equates for visibility, or direct (cone) contrast matches in which psychophysical sensitivity is uncorrected. We found that the fMRI response across the two colour and achromatic pathways is not well predicted by threshold-scaled stimuli (perceptual visibility) but is better predicted by cone contrast, particularly for area V1. Our results show that the early visual areas (V1, V2, V3, VP and hV4) all have robust responses to colour. No area showed an overall colour preference, however, until anterior to V4 where we found a ventral occipital region that has a significant preference for chromatic stimuli, indicating a functional distinction from earlier areas. We found that all of these areas have a surprisingly strong response to S-cone stimuli, at least as great as the L/M response, suggesting a relative enhancement of the S-cone cortical signal. We also identified two areas (V3A and hMT+) with a significant preference for achromatic over chromatic stimuli, indicating a functional grouping into a dorsal pathway with a strong magnocellular input.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Termination of a painful or unpleasant event can be rewarding. However, whether the brain treats relief in a similar way as it treats natural reward is unclear, and the neural processes that underlie its representation as a motivational goal remain poorly understood. We used fMRI (functional magnetic resonance imaging) to investigate how humans learn to generate expectations of pain relief. Using a pavlovian conditioning procedure, we show that subjects experiencing prolonged experimentally induced pain can be conditioned to predict pain relief. This proceeds in a manner consistent with contemporary reward-learning theory (average reward/loss reinforcement learning), reflected by neural activity in the amygdala and midbrain. Furthermore, these reward-like learning signals are mirrored by opposite aversion-like signals in lateral orbitofrontal cortex and anterior cingulate cortex. This dual coding has parallels to 'opponent process' theories in psychology and promotes a formal account of prediction and expectation during pain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper shows how a minimal neural network model of the cerebellum may be embedded within a sensory-neuro-muscular control system that mimics known anatomy and physiology. With this embedding, cerebellar learning promotes load compensation while also allowing both coactivation and reciprocal inhibition of sets of antagonist muscles. In particular, we show how synaptic long term depression guided by feedback from muscle stretch receptors can lead to trans-cerebellar gain changes that are load-compensating. It is argued that the same processes help to adaptively discover multi-joint synergies. Simulations of rapid single joint rotations under load illustrates design feasibility and stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the advantages of biological skeleto-motor systems is the opponent muscle design, which in principle makes it possible to achieve facile independent control of joint angle and joint stiffness. Prior analysis of equilibrium states of a biologically-based neural network for opponent muscle control, the FLETE model, revealed that such independent control requires specialized interneuronal circuitry to efficiently coordinate the opponent force generators. In this chapter, we refine the FLETE circuit variables specification and update the equilibrium analysis. We also incorporate additional neuronal circuitry that ensures efficient opponent force generation and velocity regulation during movement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes how corollary discharges from outflow eye movement commands can be transformed by two stages of opponent neural processing into a head-centered representation of 3-D target position. This representation implicitly defines a cyclopean coordinate system whose variables approximate the binocular vergence and spherical horizontal and vertical angles with respect to the observer's head. Various psychophysical data concerning binocular distance perception and reaching behavior are clarified by this representation. The representation provides a foundation for learning head-centered and body-centered invariant representations of both foveated and non-foveated 3-D target positions. It also enables a solution to be developed of the classical motor equivalence problem, whereby many different joint configurations of a redundant manipulator can all be used to realize a desired trajectory in 3-D space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small bistratified cells (SBCs) in the primate retina carry a major blue-yellow opponent signal to the brain. We found that SBCs also carry signals from rod photoreceptors, with the same sign as S cone input. SBCs exhibited robust responses under low scotopic conditions. Physiological and anatomical experiments indicated that this rod input arose from the AII amacrine cell-mediated rod pathway. Rod and cone signals were both present in SBCs at mesopic light levels. These findings have three implications. First, more retinal circuits may multiplex rod and cone signals than were previously thought to, efficiently exploiting the limited number of optic nerve fibers. Second, signals from AII amacrine cells may diverge to most or all of the approximately 20 retinal ganglion cell types in the peripheral primate retina. Third, rod input to SBCs may be the substrate for behavioral biases toward perception of blue at mesopic light levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE. To measure heterochromatic flicker electroretinograms (ERGs) at high (36 Hz) and intermediate (12 Hz) temporal frequencies to evaluate luminance and cone opponent responses, respectively, in glaucoma eyes with (perimetric) and without (preperimetric) visual field defects. METHODS. Flicker ERGs were recorded from one randomly chosen dilated eye of 32 patients (mean age, 61 +/- 11 years; 15 men, 17 women) from the Erlangen Glaucoma Registry and from 24 healthy volunteers (mean age, 43 +/- 11 years; 14 men, 10 women). Red and green light-emitting diodes in a Ganzfeld stimulator were sine wave-modulated in counterphase. The responses were measured at 36 Hz, the frequency at which ERGs reflect activity of the luminance pathway, and at 12 Hz, the frequency at which ERGs reflect chromatic activity. RESULTS. Response amplitudes were similar in glaucoma patients and controls. Phase differences were observed in patients with visual field defects (perimetric) compared with the control group at 36 and 12 Hz in the first harmonic and second harmonic responses. Patients without visual field defects (preperimetric) showed phase differences for the second harmonic component at 36 Hz. No age effect on response amplitudes and phases was found in any of the subject groups (controls and patients). CONCLUSIONS. The responses displayed phase differences but not amplitude differences in perimetric glaucoma patients at both 36 and 12 Hz, suggesting that both magnocellular and parvocellular pathways are affected. Preperimetric glaucoma patients also showed phase differences. The response phase may be sensitive to early dysfunction of the inner retina. (ClinicalTrials.gov number, NCT00494923.) (Invest Ophthalmol Vis Sci. 2011;52:6757-6765) DOI:10.1167/iovs.11-7538

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the study was to investigate whether there is an ocular interaction in the flicker ERG responses reflecting luminance and cone opponency in normal human subjects. Flicker ERGs were recorded from one dilated eye of 10 healthy volunteers. Each subject was tested twice: once with and once without occluding the opposite eye. Red and green LEDs were modulated in counterphase in a Ganzfeld stimulator. ERG responses were recorded for different ratios of the modulation in the red and green LEDs and at 12 and 36 Hz. The amplitudes and phases of the fundamental components were compared between the conditions with and without occlusion. The 12-Hz flicker ERGs reflected activity of the cone opponent channel, whereas the 36-Hz data reflected luminance activity. There were no significant differences between the conditions with and without occluding the opposite eye for any of the stimulus protocols. Ocular interaction is absent in flicker ERGs reflecting cone opponent and luminance activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The turtle retina has been extensively used for the study of chromatic processing mechanisms. Color opponency has been previously investigated with trichromatic paradigms, but behavioral studies show that the turtle has ail ultraviolet (UV) channel and a tetrachromatic visual system. Our laboratory has been working ill the characterization of neuronal responses in the retina of vertebrates using stimuli in the UV-visible range of the electromagnetic spectrum. In the present investigation, we recorded color-opponent responses from turtle amacrine and ganglion cells to UV and visible stimuli and extended our previous results that UV color-opponency is present at the level of the inner nuclear layer. We recorded from 181 neurons, 36 of which were spectrally opponent. Among these, there were 10 amacrine (5%), and 26 ganglion cells (15%). Morphological identification of color-opponent neurons was possible for two ganglion cell classes (G17 and G22) and two amacrine cell classes (A22 and A23b). There was a variety of cell response types and a potential for complex processing of chromatic stimuli, with intensity- and wavelength-dependent response components. Ten types of color opponency were found in ganglion cells and by adding previous results from our laboratory, 12 types of opponent responses have been found. The majority of the ganglion cells were R+UVBG- and RG+UVB-color-opponents but there were other less frequent types of chromatic opponency. This study confirms the participation of a UV channel in the processing of color opponency in the turtle inner retina and shows that the turtle visual system has the retinal mechanisms to allow many possible chromatic combinations.