997 resultados para Error diffusion
Resumo:
Le présent mémoire comprend un survol des principales méthodes de rendu en demi-tons, de l’analog screening à la recherche binaire directe en passant par l’ordered dither, avec une attention particulière pour la diffusion d’erreur. Ces méthodes seront comparées dans la perspective moderne de la sensibilité à la structure. Une nouvelle méthode de rendu en demi-tons par diffusion d’erreur est présentée et soumise à diverses évaluations. La méthode proposée se veut originale, simple, autant à même de préserver le caractère structurel des images que la méthode à l’état de l’art, et plus rapide que cette dernière par deux à trois ordres de magnitude. D’abord, l’image est décomposée en fréquences locales caractéristiques. Puis, le comportement de base de la méthode proposée est donné. Ensuite, un ensemble minutieusement choisi de paramètres permet de modifier ce comportement de façon à épouser les différents caractères fréquentiels locaux. Finalement, une calibration détermine les bons paramètres à associer à chaque fréquence possible. Une fois l’algorithme assemblé, toute image peut être traitée très rapidement : chaque pixel est attaché à une fréquence propre, cette fréquence sert d’indice pour la table de calibration, les paramètres de diffusion appropriés sont récupérés, et la couleur de sortie déterminée pour le pixel contribue en espérance à souligner la structure dont il fait partie.
Resumo:
为了提高高功率激光系统的整体效率和充分利用光能,需要对前端注入的高斯光束进行空间整形,实现驱动器终端激光的均匀化输出。采用振幅型二元面板对激光光束进行空间强度整形,利用误差扩散法进行了理论设计,数值摸拟了整形效果,同时讨论了面板加工误差以及空间滤波器的小孔大小等因素带来的影响。根据理论设计,分别加工了反高斯透射率分布和抛物线透射率分布的二元面板,并进行了整形实验,实现了各自的整形功能,并做了误差分析。实验证明二元面板能对激光光束的空间强度分布实现了精确的整形。
Resumo:
Dans ce mémoire nous allons présenter une méthode de diffusion d’erreur originale qui peut reconstruire des images en demi-ton qui plaisent à l’œil. Cette méthode préserve des détails fins et des structures visuellement identifiables présentes dans l’image originale. Nous allons tout d’abord présenter et analyser quelques travaux précédents afin de montrer certains problèmes principaux du rendu en demi-ton, et nous allons expliquer pourquoi nous avons décidé d’utiliser un algorithme de diffusion d’erreur pour résoudre ces problèmes. Puis nous allons présenter la méthode proposée qui est conceptuellement simple et efficace. L’image originale est analysée, et son contenu fréquentiel est détecté. Les composantes principales du contenu fréquentiel (la fréquence, l’orientation et le contraste) sont utilisées comme des indices dans un tableau de recherche afin de modifier la méthode de diffusion d’erreur standard. Le tableau de recherche est établi dans un étape de pré-calcul et la modification est composée par la modulation de seuil et la variation des coefficients de diffusion. Ensuite le système en entier est calibré de façon à ce que ces images reconstruites soient visuellement proches d’images originales (des aplats d’intensité constante, des aplats contenant des ondes sinusoïdales avec des fréquences, des orientations et des constrastes différents). Finalement nous allons comparer et analyser des résultats obtenus par la méthode proposée et des travaux précédents, et démontrer que la méthode proposée est capable de reconstruire des images en demi-ton de haute qualité (qui préservent des structures) avec un traitement de temps très faible.
Resumo:
Online multimedia data needs to be encrypted for access control. To be capable of working on mobile devices such as pocket PC and mobile phones, lightweight video encryption algorithms should be proposed. The two major problems in these algorithms are that they are either not fast enough or unable to work on highly compressed data stream. In this paper, we proposed a new lightweight encryption algorithm based on Huffman error diffusion. It is a selective algorithm working on compressed data. By carefully choosing the most significant parts (MSP), high performance is achieved with proper security. Experimental results has proved the algorithm to be fast. secure: and compression-compatible.
Resumo:
In this article, we study the problem of determining an appropriate grading of meshes for a system of coupled singularly perturbed reaction-diffusion problems having diffusion parameters with different magnitudes. The central difference scheme is used to discretize the problem on adaptively generated mesh where the mesh equation is derived using an equidistribution principle. An a priori monitor function is obtained from the error estimate. A suitable a posteriori analogue of this monitor function is also derived for the mesh construction which will lead to an optimal second-order parameter uniform convergence. We present the results of numerical experiments for linear and semilinear reaction-diffusion systems to support the effectiveness of our preferred monitor function obtained from theoretical analysis. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
An unstructured mesh �nite volume discretisation method for simulating di�usion in anisotropic media in two-dimensional space is discussed. This technique is considered as an extension of the fully implicit hybrid control-volume �nite-element method and it retains the local continuity of the ux at the control volume faces. A least squares function recon- struction technique together with a new ux decomposition strategy is used to obtain an accurate ux approximation at the control volume face, ensuring that the overall accuracy of the spatial discretisation maintains second order. This paper highlights that the new technique coincides with the traditional shape function technique when the correction term is neglected and that it signi�cantly increases the accuracy of the previous linear scheme on coarse meshes when applied to media that exhibit very strong to extreme anisotropy ratios. It is concluded that the method can be used on both regular and irregular meshes, and appears independent of the mesh quality.
Resumo:
Fractional partial differential equations have been applied to many problems in physics, finance, and engineering. Numerical methods and error estimates of these equations are currently a very active area of research. In this paper we consider a fractional diffusionwave equation with damping. We derive the analytical solution for the equation using the method of separation of variables. An implicit difference approximation is constructed. Stability and convergence are proved by the energy method. Finally, two numerical examples are presented to show the effectiveness of this approximation.
Resumo:
The first objective of this project is to develop new efficient numerical methods and supporting error and convergence analysis for solving fractional partial differential equations to study anomalous diffusion in biological tissue such as the human brain. The second objective is to develop a new efficient fractional differential-based approach for texture enhancement in image processing. The results of the thesis highlight that the fractional order analysis captured important features of nuclear magnetic resonance (NMR) relaxation and can be used to improve the quality of medical imaging.
Resumo:
In this paper, a new alternating direction implicit Galerkin--Legendre spectral method for the two-dimensional Riesz space fractional nonlinear reaction-diffusion equation is developed. The temporal component is discretized by the Crank--Nicolson method. The detailed implementation of the method is presented. The stability and convergence analysis is strictly proven, which shows that the derived method is stable and convergent of order $2$ in time. An optimal error estimate in space is also obtained by introducing a new orthogonal projector. The present method is extended to solve the fractional FitzHugh--Nagumo model. Numerical results are provided to verify the theoretical analysis.
Resumo:
The efficient computation of matrix function vector products has become an important area of research in recent times, driven in particular by two important applications: the numerical solution of fractional partial differential equations and the integration of large systems of ordinary differential equations. In this work we consider a problem that combines these two applications, in the form of a numerical solution algorithm for fractional reaction diffusion equations that after spatial discretisation, is advanced in time using the exponential Euler method. We focus on the efficient implementation of the algorithm on Graphics Processing Units (GPU), as we wish to make use of the increased computational power available with this hardware. We compute the matrix function vector products using the contour integration method in [N. Hale, N. Higham, and L. Trefethen. Computing Aα, log(A), and related matrix functions by contour integrals. SIAM J. Numer. Anal., 46(5):2505–2523, 2008]. Multiple levels of preconditioning are applied to reduce the GPU memory footprint and to further accelerate convergence. We also derive an error bound for the convergence of the contour integral method that allows us to pre-determine the appropriate number of quadrature points. Results are presented that demonstrate the effectiveness of the method for large two-dimensional problems, showing a speedup of more than an order of magnitude compared to a CPU-only implementation.
Genetic analysis of structural brain connectivity using DICCCOL models of diffusion MRI in 522 twins
Resumo:
Genetic and environmental factors affect white matter connectivity in the normal brain, and they also influence diseases in which brain connectivity is altered. Little is known about genetic influences on brain connectivity, despite wide variations in the brain's neural pathways. Here we applied the 'DICCCOL' framework to analyze structural connectivity, in 261 twin pairs (522 participants, mean age: 21.8 y ± 2.7SD). We encoded connectivity patterns by projecting the white matter (WM) bundles of all 'DICCCOLs' as a tracemap (TM). Next we fitted an A/C/E structural equation model to estimate additive genetic (A), common environmental (C), and unique environmental/error (E) components of the observed variations in brain connectivity. We found 44 'heritable DICCCOLs' whose connectivity was genetically influenced (α2>1%); half of them showed significant heritability (α2>20%). Our analysis of genetic influences on WM structural connectivity suggests high heritability for some WM projection patterns, yielding new targets for genome-wide association studies.
Resumo:
The association parameter in the diffuswn equaiior, dye fo Wiike one Chong has been interpreted in deferminable properties, thus permitting easily the calculation of the same for unknown systems. The proposed eqyotion a!se holds goods for water as soiute in organic solvenfs. The over-all percentage error remains the sarrse as that of the original equation.