915 resultados para Equivalent uniform dose


Relevância:

100.00% 100.00%

Publicador:

Resumo:

RESUMO: Este trabalho teve como objetivo a determinação de esquemas de tratamento alternativos para o carcinoma da próstata com radioterapia externa (EBRT) e braquiterapia de baixa taxa de dose (LDRBT) com implantes permanentes de Iodo-125, biologicamente equivalentes aos convencionalmente usados na prática clínica, com recurso a modelos teóricos e a métodos de Monte Carlo (MC). Os conceitos de dose biológica efetiva (BED) e de dose uniforme equivalente (EUD) foram utilizados, com o modelo linear-quadrático (LQ), para a determinação de regimes de tratamento equivalentes. Numa primeira abordagem, utilizou-se a BED para determinar: 1) esquemas hipofracionados de EBRT mantendo as complicações retais tardias de regimes convencionais com doses totais de 75,6 Gy, 77,4 Gy, 79,2 Gy e 81,0 Gy; e 2) a relação entre as doses totais de EBRT e LDRBT de modo a manter a BED do regime convencional de 45 Gy de EBRT e 110 Gy de LDRBT. Numa segunda abordagem, recorreu-se ao código de MC MCNPX para a simulação de distribuições de dose de EBRT e LDRBT em dois fantomas de voxel segmentados a partir das imagens de tomografia computorizada de pacientes com carcinoma da próstata. Os resultados das simulações de EBRT e LDRBT foram somados e determinada uma EUD total de forma a obterem-se: 1) esquemas equivalentes ao tratamento convencional de 25 frações de 1,8 Gy de EBRT em combinação com 110 Gy de LDRBT; e 2) esquemas equivalentes a EUD na próstata de 67 Gy, 72 Gy, 80 Gy, 90 Gy, 100 Gy e 110 Gy. Em todos os resultados nota-se um ganho terapêutico teórico na utilização de esquemas hipofracionados de EBRT. Para uma BED no reto equivalente ao esquema convencional, tem-se um aumento de 2% na BED da próstata com menos 5 frações. Este incremento dá-se de forma cada vez mais visível à medida que se reduz o número de frações, sendo da ordem dos 10-11% com menos 20 frações e dos 35-45% com menos 40 frações. Considerando os resultados das simulações de EBRT, obteve-se uma EUD média de 107 Gy para a próstata e de 42 Gy para o reto, com o esquema convencional de 110 Gy de LDRBT, seguidos de 25 frações de 1,8 Gy de EBRT. Em termos de probabilidade de controlo tumoral (igual EUD), é equivalente a este tratamento a administração de EBRT em 66 frações de 1,8 Gy, 56 de 2 Gy, 40 de 2,5 Gy, 31 de 3 Gy, 20 de 4 Gy ou 13 de 5 Gy. Relativamente à administração de 66 frações de 1,8 Gy, a EUD generalizada no reto reduz em 6% com o recurso a frações de 2,5 Gy e em 10% com frações de 4 Gy. Determinou-se uma BED total de 162 Gy para a administração de 25 frações de 1,8 Gy de EBRT em combinação com 110 Gy de LDRBT. Variando-se a dose total de LDRBT (TDLDRBT) em função da dose total de EBRT (TDEBRT), de modo a garantir uma BED de 162 Gy, obteve-se a seguinte relação:.......... Os resultados das simulações mostram que a EUD no reto diminui com o aumento da dose total de LDRBT para dose por fração de EBRT (dEBRT) inferiores a 2, Gy e aumenta para dEBRT a partir dos 3 Gy. Para quantidades de TDLDRBT mais baixas (<50 Gy), o reto beneficia de frações maiores de EBRT. À medida que se aumenta a TDLDRBT, a EUD generalizada no reto torna-se menos dependente da dEBRT. Este trabalho mostra que é possível a utilização de diferentes regimes de tratamento para o carcinoma da próstata com radioterapia que possibilitem um ganho terapêutico, quer seja administrando uma maior dose biológica com efeitos tardios constantes, quer mantendo a dose no tumor e diminuindo a toxicidade retal. A utilização com precaução de esquemas hipofracionados de EBRT, para além do benefício terapêutico, pode trazer vantagens ao nível da conveniência para o paciente e economia de custos. Os resultados das simulações deste estudo e conversão para doses de efeito biológico para o tratamento do carcinoma da próstata apresentam linhas de orientação teórica de interesse para novos ensaios clínicos. --------------------------------------------------ABSTRACT: The purpose of this work was to determine alternative radiotherapy regimens for the treatment of prostate cancer using external beam radiotherapy (EBRT) and low dose-rate brachytherapy (LDRBT) with Iodine-125 permanent implants which are biologically equivalent to conventional clinical treatments, by the use of theoretical models and Monte Carlo techniques. The concepts of biological effective dose (BED) and equivalent uniform dose (EUD), together with the linear-quadratic model (LQ), were used for determining equivalent treatment regimens. In a first approach, the BED concept was used to determine: 1) hypofractionated schemes of EBRT maintaining late rectal complications as with the conventional regimens with total doses of 75.6 Gy, 77.4 Gy, 79.2 Gy and 81.0 Gy; and 2) the relationship between total doses of EBRT and LDRBT in order to keep the BED of the conventional treatment of 45 Gy of EBRT and 110 Gy of LDRBT. In a second approach, the MC code MCNPX was used for simulating dose distributions of EBRT and LDRBT in two voxel phantoms segmented from the computed tomography of patients with prostate cancer. The results of the simulations of EBRT and LDRBT were added up and given an overall EUD in order to obtain: 1) equivalent to conventional treatment regimens of 25 fraction of 1.8 Gy of EBRT in combination with 110Gy of LDRBT; and 2) equivalent schemes of EUD of 67 Gy, 72 Gy, 80 Gy, 90 Gy, 100 Gy, and 110Gy to the prostate. In all the results it is noted a therapeutic gain using hypofractionated EBRT schemes. For a rectal BED equivalent to the conventional regimen, an increment of 2% in the prostate BED was achieved with less 5 fractions. This increase is visibly higher as the number of fractions decrease, amounting 10-11% with less 20 fractions and 35-45% with less 20 fractions. Considering the results of the EBRT simulations an average EUD of 107 Gy was achieved for the prostate and of 42 Gy for the rectum with the conventional scheme of 110 Gy of LDRBT followed by 25 fractions of 1.8 Gy of EBRT. In terms of tumor control probability (same EUD) it is equivalent to this treatment, for example, delivering the EBRT in 66 fractions of 1.8 Gy, 56 fractions of 2 Gy, 40 fractions of 2.5 Gy, 31 fractions of 3 Gy, 20 fractions of 4 Gy or 13 fractions of 5 Gy. Regarding the use of 66 fractions of 1.8 Gy, the rectum EUD is reduced to 6% with 2.5 Gy per fraction and to 10% with 4 Gy. A total BED of 162 Gy was achieved for the delivery of 25 fractions of 1.8 Gy of EBRT in combination with 110 Gy of LDRBT. By varying the total dose of LDRBT (TDLDRBT) with the total dose of EBRT (TDEBRT) so as to ensure a BED of 162 Gy, the following relationship was obtained: ....... The simulation results show that the rectum EUD decreases with the increase of the TDLDRBT, for EBRT dose per fracion (dEBRT) less than 2.5 Gy and increases for dEBRT above 3 Gy. For lower amounts of TDLDRBT (< 50Gy), the rectum benefits of larger EBRT fractions. As the TDLDRBT increases, the rectum gEUD becomes less dependent on the dEBRT. The use of different regimens which enable a therapeutic gain, whether deivering a higher dose with the same late biological effects or maintaining the dose to the tumor and reducing rectal toxicity is possible. The use with precaution of hypofractionated regimens, in addition to the therapeutic benefit, can bring advantages in terms of convenience for the patient and cost savings. The simulation results of this study together with the biological dose conversion for the treatment of prostate cancer serve as guidelines of interest for new clinical trials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim - To use Monte Carlo (MC) together with voxel phantoms to analyze the tissue heterogeneity effect in the dose distributions and equivalent uniform dose (EUD) for (125)I prostate implants. Background - Dose distribution calculations in low dose-rate brachytherapy are based on the dose deposition around a single source in a water phantom. This formalism does not take into account tissue heterogeneities, interseed attenuation, or finite patient dimensions effects. Tissue composition is especially important due to the photoelectric effect. Materials and Methods - The computed tomographies (CT) of two patients with prostate cancer were used to create voxel phantoms for the MC simulations. An elemental composition and density were assigned to each structure. Densities of the prostate, vesicles, rectum and bladder were determined through the CT electronic densities of 100 patients. The same simulations were performed considering the same phantom as pure water. Results were compared via dose-volume histograms and EUD for the prostate and rectum. Results - The mean absorbed doses presented deviations of 3.3-4.0% for the prostate and of 2.3-4.9% for the rectum, when comparing calculations in water with calculations in the heterogeneous phantom. In the calculations in water, the prostate D 90 was overestimated by 2.8-3.9% and the rectum D 0.1cc resulted in dose differences of 6-8%. The EUD resulted in an overestimation of 3.5-3.7% for the prostate and of 7.7-8.3% for the rectum. Conclusions - The deposited dose was consistently overestimated for the simulation in water. In order to increase the accuracy in the determination of dose distributions, especially around the rectum, the introduction of the model-based algorithms is recommended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: In the radiopharmaceutical therapy approach to the fight against cancer, in particular when it comes to translating laboratory results to the clinical setting, modeling has served as an invaluable tool for guidance and for understanding the processes operating at the cellular level and how these relate to macroscopic observables. Tumor control probability (TCP) is the dosimetric end point quantity of choice which relates to experimental and clinical data: it requires knowledge of individual cellular absorbed doses since it depends on the assessment of the treatment's ability to kill each and every cell. Macroscopic tumors, seen in both clinical and experimental studies, contain too many cells to be modeled individually in Monte Carlo simulation; yet, in particular for low ratios of decays to cells, a cell-based model that does not smooth away statistical considerations associated with low activity is a necessity. The authors present here an adaptation of the simple sphere-based model from which cellular level dosimetry for macroscopic tumors and their end point quantities, such as TCP, may be extrapolated more reliably. METHODS: Ten homogenous spheres representing tumors of different sizes were constructed in GEANT4. The radionuclide 131I was randomly allowed to decay for each model size and for seven different ratios of number of decays to number of cells, N(r): 1000, 500, 200, 100, 50, 20, and 10 decays per cell. The deposited energy was collected in radial bins and divided by the bin mass to obtain the average bin absorbed dose. To simulate a cellular model, the number of cells present in each bin was calculated and an absorbed dose attributed to each cell equal to the bin average absorbed dose with a randomly determined adjustment based on a Gaussian probability distribution with a width equal to the statistical uncertainty consistent with the ratio of decays to cells, i.e., equal to Nr-1/2. From dose volume histograms the surviving fraction of cells, equivalent uniform dose (EUD), and TCP for the different scenarios were calculated. Comparably sized spherical models containing individual spherical cells (15 microm diameter) in hexagonal lattices were constructed, and Monte Carlo simulations were executed for all the same previous scenarios. The dosimetric quantities were calculated and compared to the adjusted simple sphere model results. The model was then applied to the Bortezomib-induced enzyme-targeted radiotherapy (BETR) strategy of targeting Epstein-Barr virus (EBV)-expressing cancers. RESULTS: The TCP values were comparable to within 2% between the adjusted simple sphere and full cellular models. Additionally, models were generated for a nonuniform distribution of activity, and results were compared between the adjusted spherical and cellular models with similar comparability. The TCP values from the experimental macroscopic tumor results were consistent with the experimental observations for BETR-treated 1 g EBV-expressing lymphoma tumors in mice. CONCLUSIONS: The adjusted spherical model presented here provides more accurate TCP values than simple spheres, on par with full cellular Monte Carlo simulations while maintaining the simplicity of the simple sphere model. This model provides a basis for complementing and understanding laboratory and clinical results pertaining to radiopharmaceutical therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: In the radiopharmaceutical therapy approach to the fight against cancer, in particular when it comes to translating laboratory results to the clinical setting, modeling has served as an invaluable tool for guidance and for understanding the processes operating at the cellular level and how these relate to macroscopic observables. Tumor control probability (TCP) is the dosimetric end point quantity of choice which relates to experimental and clinical data: it requires knowledge of individual cellular absorbed doses since it depends on the assessment of the treatment's ability to kill each and every cell. Macroscopic tumors, seen in both clinical and experimental studies, contain too many cells to be modeled individually in Monte Carlo simulation; yet, in particular for low ratios of decays to cells, a cell-based model that does not smooth away statistical considerations associated with low activity is a necessity. The authors present here an adaptation of the simple sphere-based model from which cellular level dosimetry for macroscopic tumors and their end point quantities, such as TCP, may be extrapolated more reliably. METHODS: Ten homogenous spheres representing tumors of different sizes were constructed in GEANT4. The radionuclide 131I was randomly allowed to decay for each model size and for seven different ratios of number of decays to number of cells, N(r): 1000, 500, 200, 100, 50, 20, and 10 decays per cell. The deposited energy was collected in radial bins and divided by the bin mass to obtain the average bin absorbed dose. To simulate a cellular model, the number of cells present in each bin was calculated and an absorbed dose attributed to each cell equal to the bin average absorbed dose with a randomly determined adjustment based on a Gaussian probability distribution with a width equal to the statistical uncertainty consistent with the ratio of decays to cells, i.e., equal to Nr-1/2. From dose volume histograms the surviving fraction of cells, equivalent uniform dose (EUD), and TCP for the different scenarios were calculated. Comparably sized spherical models containing individual spherical cells (15 microm diameter) in hexagonal lattices were constructed, and Monte Carlo simulations were executed for all the same previous scenarios. The dosimetric quantities were calculated and compared to the adjusted simple sphere model results. The model was then applied to the Bortezomib-induced enzyme-targeted radiotherapy (BETR) strategy of targeting Epstein-Barr virus (EBV)-expressing cancers. RESULTS: The TCP values were comparable to within 2% between the adjusted simple sphere and full cellular models. Additionally, models were generated for a nonuniform distribution of activity, and results were compared between the adjusted spherical and cellular models with similar comparability. The TCP values from the experimental macroscopic tumor results were consistent with the experimental observations for BETR-treated 1 g EBV-expressing lymphoma tumors in mice. CONCLUSIONS: The adjusted spherical model presented here provides more accurate TCP values than simple spheres, on par with full cellular Monte Carlo simulations while maintaining the simplicity of the simple sphere model. This model provides a basis for complementing and understanding laboratory and clinical results pertaining to radiopharmaceutical therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: Radiotherapy is planned to achieve the optimal physical dose distribution to the target tumour volume whilst minimising dose to the surrounding normal tissue. Recent in vitro experimental evidence has demonstrated an important role for intercellular communication in radiobiological responses following non-uniform exposures. This study aimed to model the impact of these effects in the context of techniques involving highly modulated radiation fields or spatially fractionated treatments such as GRID therapy.

METHODS: Using the small animal radiotherapy research platform (SARRP) as a key enabling technology to deliver precision imaged-guided radiotherapy, it is possible to achieve spatially modulated dose distributions that model typical clinical scenarios. In this work, we planned uniform and spatially fractionated dose distributions using multiple isocentres with beam sizes of 0.5 - 5 mm to obtain 50% volume coverage in a subcutaneous murine tumour model, and applied a model of cellular response that incorporates intercellular communication to assess the potential impact of signalling effects with different ranges.

RESULTS: Models of GRID treatment plans which incorporate intercellular signalling showed increased cell killing within the low dose region. This results in an increase in the Equivalent Uniform Dose (EUD) for GRID exposures compared to standard models, with some GRID exposures being predicted to be more effective than uniform delivery of the same physical dose.

CONCLUSIONS: This study demonstrates the potential impact of radiation induced signalling on tumour cell response for spatially fractionated therapies and identifies key experiments to validate this model and quantify these effects in vivo.

ADVANCES IN KNOWLEDGE: This study highlights the unique opportunities now possible using advanced preclinical techniques to develop a foundation for biophysical optimisation in radiotherapy treatment planning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To assess the impact of nonuniform dose distribution within lesions and tumor-involved organs of patients receiving Zevalin, and to discuss possible implications of equivalent uniform biological effective doses (EU-BED) on treatment efficacy and toxicity. MATLAB? -based software for voxel-based dosimetry was adopted for this purpose. METHODS: Eleven lesions from seven patients with either indolent or aggressive non-Hodgkin lymphoma were analyzed, along with four organs with disease. Absorbed doses were estimated by a direct integration of single-voxel kinetic data from serial tomographic images. After proper corrections, differential BED distributions and surviving cell fractions were estimated, allowing for the calculation of EU-BED. To quantify dose uniformity in each target area, a heterogeneity index was defined. RESULTS: Average doses were below those prescribed by conventional radiotherapy to eradicate lymphoma lesions. Dose heterogeneity and effect on tumor control varied among lesions, with no apparent relation to tumor mass. Although radiation doses to involved organs were safe, unexpected liver toxicity occurred in one patient who presented with a pattern of diffuse infiltration. CONCLUSION: Voxel-based dosimetry and radiobiologic modeling can be successfully applied to lesions and tumor-involved organs, representing a methodological advance over estimation of mean absorbed doses. However, effects on tumor control and organ toxicity still cannot be easily predicted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the scattered X-ray beams produced by a mammography unit with a Mo/Mo, Mo/Rh and W/Rh anode/filter combinations were applied in the evaluation of the Hp(10, 0) and mean conversion coefficients from air kerma to the personal dose equivalent ((C) over barH(p(10,0 degrees))). The higher values of H(p)(10,0 degrees) are related to the Mo/Rh combination whereas the lower ones are for the W/Rh target/filter. (C) over barH(p(10,0 degrees)) values are in the range 0.19-0.54 Sv/Gy, where the higher values comprise the W/Rh combination. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To investigate the effect of metal implants in proton radiotherapy, dose distributions of different, clinically relevant treatment plans have been measured in an anthropomorphic phantom and compared to treatment planning predictions. The anthropomorphic phantom, which is sliced into four segments in the cranio-caudal direction, is composed of tissue equivalent materials and contains a titanium implant in a vertebral body in the cervical region. GafChromic® films were laid between the different segments to measure the 2D delivered dose. Three different four-field plans have then been applied: a Single-Field-Uniform-Dose (SFUD) plan, both with and without artifact correction implemented, and an Intensity-Modulated-Proton-Therapy (IMPT) plan with the artifacts corrected. For corrections, the artifacts were manually outlined and the Hounsfield Units manually set to an average value for soft tissue. Results show a surprisingly good agreement between prescribed and delivered dose distributions when artifacts have been corrected, with > 97% and 98% of points fulfilling the gamma criterion of 3%/3 mm for both SFUD and the IMPT plans, respectively. In contrast, without artifact corrections, up to 18% of measured points fail the gamma criterion of 3%/3 mm for the SFUD plan. These measurements indicate that correcting manually for the reconstruction artifacts resulting from metal implants substantially improves the accuracy of the calculated dose distribution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

INTRODUCTION: Ayahuasca is a psychotropic plant beverage initially used by shamans throughout the Amazon region during traditional religious cult. In recent years, ayahuasca has also been used in ceremonies of a number of modern syncretic religious groups, including pregnant women. However, no documented study has been performed to evaluate the risk of developmental toxicity of ayahuasca. METHODS: In the present work, maternal and developmental toxicity was evaluated in Wistar rats. Ayahuasca was administered to pregnant rats in three different doses [the equivalent typical dose (TD) administered to humans, five-fold TD and 10-fold TD] during the gestational period (6-20 days). RESULTS: Dams treated with the highest ayahuasca dose showed maternal toxicity with decrease of weight gain and food intake. Visceral fetal findings were observed in all treatment groups. Skeletal findings were observed in the intermediate- and high-dose groups. The fetuses deriving from the highest dose group also presented a decrease in body weight. CONCLUSIONS: From these results, it is possible to conclude that there is a risk of maternal and developmental toxicity following ayahuasca exposure and that the level of toxicity appears to be dose-dependent. Birth Defects Res (Part B) 89:207-212, 2010. (C) 2010 Wiley-Liss, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Résumé : La radiothérapie par modulation d'intensité (IMRT) est une technique de traitement qui utilise des faisceaux dont la fluence de rayonnement est modulée. L'IMRT, largement utilisée dans les pays industrialisés, permet d'atteindre une meilleure homogénéité de la dose à l'intérieur du volume cible et de réduire la dose aux organes à risque. Une méthode usuelle pour réaliser pratiquement la modulation des faisceaux est de sommer de petits faisceaux (segments) qui ont la même incidence. Cette technique est appelée IMRT step-and-shoot. Dans le contexte clinique, il est nécessaire de vérifier les plans de traitement des patients avant la première irradiation. Cette question n'est toujours pas résolue de manière satisfaisante. En effet, un calcul indépendant des unités moniteur (représentatif de la pondération des chaque segment) ne peut pas être réalisé pour les traitements IMRT step-and-shoot, car les poids des segments ne sont pas connus à priori, mais calculés au moment de la planification inverse. Par ailleurs, la vérification des plans de traitement par comparaison avec des mesures prend du temps et ne restitue pas la géométrie exacte du traitement. Dans ce travail, une méthode indépendante de calcul des plans de traitement IMRT step-and-shoot est décrite. Cette méthode est basée sur le code Monte Carlo EGSnrc/BEAMnrc, dont la modélisation de la tête de l'accélérateur linéaire a été validée dans une large gamme de situations. Les segments d'un plan de traitement IMRT sont simulés individuellement dans la géométrie exacte du traitement. Ensuite, les distributions de dose sont converties en dose absorbée dans l'eau par unité moniteur. La dose totale du traitement dans chaque élément de volume du patient (voxel) peut être exprimée comme une équation matricielle linéaire des unités moniteur et de la dose par unité moniteur de chacun des faisceaux. La résolution de cette équation est effectuée par l'inversion d'une matrice à l'aide de l'algorithme dit Non-Negative Least Square fit (NNLS). L'ensemble des voxels contenus dans le volume patient ne pouvant être utilisés dans le calcul pour des raisons de limitations informatiques, plusieurs possibilités de sélection ont été testées. Le meilleur choix consiste à utiliser les voxels contenus dans le Volume Cible de Planification (PTV). La méthode proposée dans ce travail a été testée avec huit cas cliniques représentatifs des traitements habituels de radiothérapie. Les unités moniteur obtenues conduisent à des distributions de dose globale cliniquement équivalentes à celles issues du logiciel de planification des traitements. Ainsi, cette méthode indépendante de calcul des unités moniteur pour l'IMRT step-andshootest validée pour une utilisation clinique. Par analogie, il serait possible d'envisager d'appliquer une méthode similaire pour d'autres modalités de traitement comme par exemple la tomothérapie. Abstract : Intensity Modulated RadioTherapy (IMRT) is a treatment technique that uses modulated beam fluence. IMRT is now widespread in more advanced countries, due to its improvement of dose conformation around target volume, and its ability to lower doses to organs at risk in complex clinical cases. One way to carry out beam modulation is to sum smaller beams (beamlets) with the same incidence. This technique is called step-and-shoot IMRT. In a clinical context, it is necessary to verify treatment plans before the first irradiation. IMRT Plan verification is still an issue for this technique. Independent monitor unit calculation (representative of the weight of each beamlet) can indeed not be performed for IMRT step-and-shoot, because beamlet weights are not known a priori, but calculated by inverse planning. Besides, treatment plan verification by comparison with measured data is time consuming and performed in a simple geometry, usually in a cubic water phantom with all machine angles set to zero. In this work, an independent method for monitor unit calculation for step-and-shoot IMRT is described. This method is based on the Monte Carlo code EGSnrc/BEAMnrc. The Monte Carlo model of the head of the linear accelerator is validated by comparison of simulated and measured dose distributions in a large range of situations. The beamlets of an IMRT treatment plan are calculated individually by Monte Carlo, in the exact geometry of the treatment. Then, the dose distributions of the beamlets are converted in absorbed dose to water per monitor unit. The dose of the whole treatment in each volume element (voxel) can be expressed through a linear matrix equation of the monitor units and dose per monitor unit of every beamlets. This equation is solved by a Non-Negative Least Sqvare fif algorithm (NNLS). However, not every voxels inside the patient volume can be used in order to solve this equation, because of computer limitations. Several ways of voxel selection have been tested and the best choice consists in using voxels inside the Planning Target Volume (PTV). The method presented in this work was tested with eight clinical cases, which were representative of usual radiotherapy treatments. The monitor units obtained lead to clinically equivalent global dose distributions. Thus, this independent monitor unit calculation method for step-and-shoot IMRT is validated and can therefore be used in a clinical routine. It would be possible to consider applying a similar method for other treatment modalities, such as for instance tomotherapy or volumetric modulated arc therapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Técnicas de otimização numérica são úteis na solução de problemas de determinação da melhor entrada para sistemas descritos por modelos matemáticos e cujos objetivos podem ser expressos de uma maneira quantitativa. Este trabalho aborda o problema de otimizar as dosagens dos medicamentos no tratamento da AIDS em termos de um balanço entre a resposta terapêutica e os efeitos colaterais. Um modelo matemático para descrever a dinâmica do vírus HIV e células CD4 é utilizado para calcular a dosagem ótima do medicamento no tratamento a curto prazo de pacientes com AIDS por um método de otimização direta utilizando uma função custo do tipo Bolza. Os parâmetros do modelo foram ajustados com dados reais obtidos da literatura. Com o objetivo de simplificar os procedimentos numéricos, a lei de controle foi expressa em termos de uma expansão em séries que, após truncamento, permite obter controles sub-ótimos. Quando os pacientes atingem um estado clínico satisfatório, a técnica do Regulador Linear Quadrático (RLQ) é utilizada para determinar a dosagem permanente de longo período para os medicamentos. As dosagens calculadas utilizando a técnica RLQ , tendem a ser menores do que a equivalente terapia de dose constante em termos do expressivo aumento na contagem das células T+ CD4 e da redução da densidade de vírus livre durante um intervalo fixo de tempo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The biggest advantage of plasma immersion ion implantation (PIII) is the capability of treating objects with irregular geometry without complex manipulation of the target holder. The effectiveness of this approach relies on the uniformity of the incident ion dose. Unfortunately, perfect dose uniformity is usually difficult to achieve when treating samples of complex shape. The problems arise from the non-uniform plasma density and expansion of plasma sheath. A particle-in-cell computer simulation is used to study the time-dependent evolution of the plasma sheath surrounding two-dimensional objects during process of plasma immersion ion implantation. Before starting the implantation phase, steady-state nitrogen plasma is established inside the simulation volume by using ionization of gas precursor with primary electrons. The plasma self-consistently evolves to a non-uniform density distribution, which is used as initial density distribution for the implantation phase. As a result, we can obtain a more realistic description of the plasma sheath expansion and dynamics. Ion current density on the target, average impact energy, and trajectories of the implanted ions were calculated for three geometrical shapes. Large deviations from the uniform dose distribution have been observed for targets with irregular shapes. In addition, effect of secondary electron emission has been included in our simulation and no qualitative modifications to the sheath dynamics have been noticed. However, the energetic secondary electrons change drastically the plasma net balance and also pose significant X-ray hazard. Finally, an axial magnetic field has been added to the calculations and the possibility for magnetic insulation of secondary electrons has been proven.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Effects of bentazon, metolachlor, trifluralin, imazethapyr, imazethapyr+lactofen, haloxyfop-methyl, glyphosate and chlorimuron-ethyl at rates of 2 and 10 times the equivalent commercial dose on soil microbial activity was evaluated in soil samples extracted from a field never treated before. Global soil microbe respiration, estimated by CO2 production at 2, 4, 8, 12, 16, 20, 24 and 28 days of soil incubation and enzymatic activities (dehydrogenase and fluorescein diacetate hydrolysis) at 8 and 28 days were used as bioindicators. Bentazon and mixture imazethapyr+lactofen at the highest rate and haloxyfop-methyl at both rates, inhibited soil respiration although with differences in timing and duration. None of the herbicides affected FDA hydrolysis. Dehydrogenase activity was inhibited at 8 days of incubation with bentazon and imazethapyr at high rates but it was stimulated by metolachlor and imazethapyr at low rate and glyphosate at the highest rate. Herbicide effects on soil microbial activity was detected with higher sensitivity by global soil microbe respiration and dehydrogenase activity than by FDA hydrolysis. Only dehydrogenase activity and soil respiration estimations at 8 days of soil incubation had significant correlation. Results indicated the need of multiple estimations when evaluating herbicides effects on soil microbiota

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The current standard treatment for head and neck cancer at our institution uses intensity-modulated x-ray therapy (IMRT), which improves target coverage and sparing of critical structures by delivering complex fluence patterns from a variety of beam directions to conform dose distributions to the shape of the target volume. The standard treatment for breast patients is field-in-field forward-planned IMRT, with initial tangential fields and additional reduced-weight tangents with blocking to minimize hot spots. For these treatment sites, the addition of electrons has the potential of improving target coverage and sparing of critical structures due to rapid dose falloff with depth and reduced exit dose. In this work, the use of mixed-beam therapy (MBT), i.e., combined intensity-modulated electron and x-ray beams using the x-ray multi-leaf collimator (MLC), was explored. The hypothesis of this study was that addition of intensity-modulated electron beams to existing clinical IMRT plans would produce MBT plans that were superior to the original IMRT plans for at least 50% of selected head and neck and 50% of breast cases. Dose calculations for electron beams collimated by the MLC were performed with Monte Carlo methods. An automation system was created to facilitate communication between the dose calculation engine and the treatment planning system. Energy and intensity modulation of the electron beams was accomplished by dividing the electron beams into 2x2-cm2 beamlets, which were then beam-weight optimized along with intensity-modulated x-ray beams. Treatment plans were optimized to obtain equivalent target dose coverage, and then compared with the original treatment plans. MBT treatment plans were evaluated by participating physicians with respect to target coverage, normal structure dose, and overall plan quality in comparison with original clinical plans. The physician evaluations did not support the hypothesis for either site, with MBT selected as superior in 1 out of the 15 head and neck cases (p=1) and 6 out of 18 breast cases (p=0.95). While MBT was not shown to be superior to IMRT, reductions were observed in doses to critical structures distal to the target along the electron beam direction and to non-target tissues, at the expense of target coverage and dose homogeneity. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La construcción en la actualidad de nuevas fuentes para el uso de haces de neutrones así como los programas de renovación en curso en algunas de las instalaciones experimentales existentes han evidenciado la necesidad urgente de desarrollar la tecnología empleada para la construcción de guías de neutrones con objeto de hacerlas mas eficientes y duraderas. Esto viene motivado por el hecho de que varias instalaciones de experimentación con haces de neutrones han reportado un número de incidentes mecánicos con tales guías, lo que hace urgente el progresar en nuestro conocimiento de los susbtratos vítreos sobre los cuales se depositan los espejos que permiten la reflexión total de los neutrones y como aquellos se degradan con la radiación. La presente tesis se inscribe en un acuerdo de colaboración establecido entre el Institut Max von Laue - Paul Langevin (ILL) de Grenoble y el Consorcio ESS-Bilbao con objeto de mejorar el rendimiento y sostenibilidad de los sistemas futuros de guiado de neutrones. El caso de la Fuente Europea de Espalación en construcción en Lund sirve como ejemplo ya que se contempla la instalación de guías de neutrones de más de 100 metros en algunos de los instrumentos. Por otro lado, instalaciones como el ILL prevén también dentro del programa Endurance de rejuvenecimiento la reconstrucción de varias líneas de transporte de haz. Para el presente estudio se seleccionaron cuatro tipos de vidrios borosilicatados que fueron el Borofloat, N-ZK7, N-BK7 y SBSL7. Los tres primeros son bien conocidos por los especialistas en instrumentación neutrónica ya que se han empleado en la construcción de varias instalaciones mientras que el último es un candidato potencial en la fabricación de substratos para espejos neutrónicos en un futuro. Los cuatro vidrios tiene un contenido en óxido de Boro muy similar, approximadamente un 10 mol.%. Tal hecho que obedece a las regulaciones para la fabricación de estos dispositivos hace que tales substratos operen como protección radiológica absorbiendo los neutrones transmitidos a través del espejo de neutrones. Como contrapartida a tal beneficio, la reacción de captura 10B(n,_)7Li puede degradar el substrato vítreo debido a los 2.5 MeV de energía cinética depositados por la partícula _ y los núcleos en retroceso y de hecho la fragilidad de tales vidrios bajo radiación ha sido atribuida desde hace ya tiempo a los efectos de esta reacción. La metodología empleada en esta tesis se ha centrado en el estudio de la estructura de estos vidrios borosilicatados y como esta se comporta bajo condiciones de radiación. Los materiales en cuestión presentan estructuras que dependen de su composición química y en particular del ratio entre formadores y modificadores de la red iono-covalente. Para ello se han empleado un conjunto de técnicas de caracterización tanto macro- como microscópicas tales como estudios de dureza, TEM, Raman, SANS etc. que se han empleado también para determinar el comportamiento de estos materiales bajo radiación. En particular, algunas propiedades macroscópicas relacionadas con la resistencia de estos vidrios como elementos estructurales de las guías de neutrones han sido estudiadas así como también los cambios en la estructura vítrea consecuencia de la radiación. Para este propósito se ha diseñado y fabricado por el ILL un aparato para irradiación de muestras con neutrones térmicos en el reactor del ILL que permite controlar la temperatura alcanzada por la muestra a menos de 100 °C. Tal equipo en comparación con otros ya existences permite en cuestión de dias acumular las dosis recibidas por una guía en operación a lo largo de varios años. El uso conjunto de varias técnicas de caracterización ha llevado a revelar que los vidrios aqui estudiados son significativamente diferentes en cuanto a su estructura y que tales diferencias afectan a sus propiedades macroscópicas asi como a su comportamiento bajo radiación. Tal resultado ha sido sorprendente ya que, como se ha mencionado antes, algunos de estos vidrios eran bien conocidos por los fabricantes de guías de neutrones y hasta el momento eran considerados prácticamente similares debido a su contenido comparable en óxido de Boro. Sin embargo, los materiales N-BK7 and S-BSL7 muetran gran homogeneidad a todas las escalas de longitud, y más específicamente, a escalas nanométricas las subredes de Sílice y óxido de Boro se mezclan dando logar a estructuras locales que recuerdan a la del cristal de Reedmergnerita. Por el contrario, N-ZK7 y Borofloat muestran dominios separados ricos en Sílice o Boro. Como era de esperar, las importantes diferencias arriba mencionadas se traducen en comportamientos dispares de estos materiales bajo un haz de neutrones térmicos. Los resultados muestran que el N-BK7 y el S-BSL7 son los más estables bajo radiación, lo que macroscópicamente hace que estos materiales muestren un comportamiento similar expandiéndose lentamente en función de la dosis recibida. Por el contario, los otros dos materiales muestran un comportamiento mucho más reactivo, que hace que inicialmente se compacten con la dosis recibida lo que hace que las redes de Silicio y Boro se mezclen resultando en un incremento en densidad hasta alcanzar un valor límite, seguido por un proceso de expansión lenta que resulta comparable al observado para N-BK7 y SBSL7. Estos resultados nos han permitido explicar el origen de las notorias diferencias observadas en cuanto a las dosis límite a partir de las cuales estos materiales desarrollan procesos de fragmentación en superficie. ABSTRACT The building of new experimental neutron beam facilities as well as the renewal programmes under development at some of the already existing installations have pinpointed the urgent need to develop the neutron guide technology in order to make such neutron transport devices more efficient and durable. In fact, a number of mechanical failures of neutron guides have been reported by several research centres. It is therefore important to understand the behaviour of the glass substrates on top of which the neutron optics mirrors are deposited and how these materials degrade under radiation conditions. The case of the European Spallation Source (ESS) at present under construction at Lund is a good example. It previews the deployment of neutron guides having more than 100 metres of length for most of the instruments. Also, the future renovation programme of the ILL, called Endurance, foresees the refurbishment of several beam lines. This Ph.D. thesis was the result of a collaboration agreement between the ILL and ESS-Bilbao aiming to improve the performance and sustainability of future neutron delivery systems. Four different industrially produced alkali-borosilicate glasses were selected for this study: Borofloat, N-ZK7, N-BK7 and SBSL7. The first three are well known within the neutron instrumentation community as they have already been used in several installations whereas the last one is at present considered as a candidate for making future mirror substrates. All four glasses have a comparable content of boron oxide of about 10 mol.%. The presence of such a strong neutron absorption element is in fact a mandatory component for the manufacturing of neutron guides because it provides a radiological shielding for the environment. This benefit is however somewhat counterbalanced since the resulting 10B(n,_)7Li reactions degrade the glass due to the deposited energy of 2.5 MeV by the _ particle and the recoil nuclei. In fact, the brittleness of some of these materials has been ascribed to this reaction. The methodology employed by this study consisted in understanding the general structure of borosilicates and how they behave under irradiation. Such materials have a microscopic structure strongly dependent upon their chemical content and particularly on the ratios between network formers and modifiers. The materials have been characterized by a suite of macroscopic and structural techniques such as hardness, TEM, Raman, SANS, etc. and their behaviour under irradiation was analysed. Some macroscopic properties related to their resistance when used as guide structural elements were monitored. Also, changes in the vitreous structure due to radiation were observed by means of several experimental tools. For such a purpose, an irradiation apparatus has been designed and manufactured to enable irradiation with thermal neutrons within the ILL reactor while keeping the samples below 100 °C. The main advantage of this equipment if compared to others previously available was that it allowed to reach in just some days an equivalent neutron dose to that accumulated by guides after several years of use. The concurrent use of complementary characterization techniques lead to the discovery that the studied glasses were deeply different in terms of their glass network. This had a strong impact on their macroscopic properties and their behaviour under irradiation. This result was a surprise since, as stated above, some of these materials were well known by the neutron guide manufacturers, and were considered to be almost equivalent because of their similar boron oxide content. The N-BK7 and S-BSL7 materials appear to be fairly homogeneous glasses at different length scales. More specifically, at nanometre scales, silicon and boron oxide units seem to mix and generate larger structures somewhat resembling crystalline Reedmergnerite. In contrast, N-ZK7 and Borofloat are characterized by either silicon or boron rich domains. As one could expect, these drastic differences lead to their behaviour under thermal neutron flux. The results show that N-BK7 and S-BSL7 are structurally the most stable under radiation. Macroscopically, such stability results in the fact that these two materials show very slow swelling as a function or radiation dose. In contrast, the two other glasses are much more reactive. The whole glass structure compacts upon radiation. Specifically, the silica network, and the boron units tend to blend leading to an increase in density up to some saturation, followed by a very slow expansion which comes to be of the same order than that shown by N-BK7 and S-BSL7. Such findings allowed us to explain the drastic differences in the radiation limits for macroscopic surface splintering for these materials when they are used in neutron guides.