995 resultados para Equacions integrals estoc
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
In this paper we prove that the solution of a backward stochastic differential equation, which involves a subdifferential operator and associated to a family of reflecting diffusion processes, converges to the solution of a deterministic backward equation and satisfes a large deviation principle.
Resumo:
Projecte de recerca elaborat a partir d’una estada a la Dublin Institute for Advanced Studies, Irlanda, entre setembre i desembre del 2009.En els últims anys s’ha realitzat un important avanç en la modelització tridimensional en magnetotel•lúrica (MT) gracies a l'augment d’algorismes d’inversió tridimensional disponibles. Aquests codis utilitzen diferents formulacions del problema (diferències finites, elements finits o equacions integrals), diverses orientacions del sistema de coordenades i, o bé en el conveni de signe, més o menys, en la dependència temporal. Tanmateix, les impedàncies resultants per a tots els valors d'aquests codis han de ser les mateixes una vegada que es converteixen a un conveni de signe comú i al mateix sistema de coordenades. Per comparar els resultats dels diferents codis hem dissenyat models diferents de resistivitats amb estructures tridimensional incrustades en un subsòl homogeni. Un requisit fonamental d’aquests models és que generin impedàncies amb valors importants en els elements de la diagonal, que no són menyspreables. A diferència dels casos del modelització de dades magnetotel.lúriques unidimensionals i bidimensionals, pel al cas tridimensional aquests elements de les diagonals del tensor d'impedància porten informació sobre l'estructura de la resistivitat. Un dels models de terreny s'utilitza per comparar els diferents algoritmes que és la base per posterior inversió dels diferents codis. Aquesta comparació va ser seguida de la inversió per recuperar el conjunt de dades d'una estructura coneguda.
Resumo:
Exact solutions of the classical equations corresponding to the leading-logarithm approximation are obtained. They are classified by an (integer) topological number.
Resumo:
This paper is devoted to prove a large-deviation principle for solutions to multidimensional stochastic Volterra equations.
Resumo:
The concept of conditional stability constant is extended to the competitive binding of small molecules to heterogeneous surfaces or macromolecules via the introduction of the conditional affinity spectrum (CAS). The CAS describes the distribution of effective binding energies experienced by one complexing agent at a fixed concentration of the rest. We show that, when the multicomponent system can be described in terms of an underlying affinity spectrum [integral equation (IE) approach], the system can always be characterized by means of a CAS. The thermodynamic properties of the CAS and its dependence on the concentration of the rest of components are discussed. In the context of metal/proton competition, analytical expressions for the mean (conditional average affinity) and the variance (conditional heterogeneity) of the CAS as functions of pH are reported and their physical interpretation discussed. Furthermore, we show that the dependence of the CAS variance on pH allows for the analytical determination of the correlation coefficient between the binding energies of the metal and the proton. Nonideal competitive adsorption isotherm and Frumkin isotherms are used to illustrate the results of this work. Finally, the possibility of using CAS when the IE approach does not apply (for instance, when multidentate binding is present) is explored. © 2006 American Institute of Physics.
Resumo:
An analytical approach for the interpretation of multicomponent heterogeneous adsorption or complexation isotherms in terms of multidimensional affinity spectra is presented. Fourier transform, applied to analyze the corresponding integral equation, leads to an inversion formula which allows the computation of the multicomponent affinity spectrum underlying a given competitive isotherm. Although a different mathematical methodology is used, this procedure can be seen as the extension to multicomponent systems of the classical Sips’s work devoted to monocomponent systems. Furthermore, a methodology which yields analytical expressions for the main statistical properties (mean free energies of binding and covariance matrix) of multidimensional affinity spectra is reported. Thus, the level of binding correlation between the different components can be quantified. It has to be highlighted that the reported methodology does not require the knowledge of the affinity spectrum to calculate the means, variances, and covariance of the binding energies of the different components. Nonideal competitive consistent adsorption isotherm, widely used in metal/proton competitive complexation to environmental macromolecules, and Frumkin competitive isotherms are selected to illustrate the application of the reported results. Explicit analytical expressions for the affinity spectrum as well as for the matrix correlation are obtained for the NICCA case. © 2004 American Institute of Physics.
Resumo:
By appealing to renewal theory we determine the equations that the mean exit time of a continuous-time random walk with drift satisfies both when the present coincides with a jump instant or when it does not. Particular attention is paid to the corrections ensuing from the non-Markovian nature of the process. We show that when drift and jumps have the same sign the relevant integral equations can be solved in closed form. The case when holding times have the classical Erlang distribution is considered in detail.
Resumo:
En tot cas, jo voldria que aquesta conferència fos això que he dit: una breu lliçó sobre la importància de les equacions diferencials. Parlaré d'elles des de el punt de vista del models, és a dir, dels fenòmens que modelitzeu. I intentaré explicar que malgrat el seu origen antic, totes elles segueixen presentant avui en dia problemes nous i interessants, tant des de el punt de vista teòric com pràctic.
Resumo:
We propose quadrature rules for the approximation of line integrals possessing logarithmic singularities and show their convergence. In some instances a superconvergence rate is demonstrated.
Resumo:
The integral of the Wigner function over a subregion of the phase space of a quantum system may be less than zero or greater than one. It is shown that for systems with 1 degree of freedom, the problem of determining the best possible upper and lower bounds on such an integral, over an possible states, reduces to the problem of finding the greatest and least eigenvalues of a Hermitian operator corresponding to the subregion. The problem is solved exactly in the case of an arbitrary elliptical region. These bounds provide checks on experimentally measured quasiprobability distributions.
Resumo:
The integral of the Wigner function of a quantum-mechanical system over a region or its boundary in the classical phase plane, is called a quasiprobability integral. Unlike a true probability integral, its value may lie outside the interval [0, 1]. It is characterized by a corresponding selfadjoint operator, to be called a region or contour operator as appropriate, which is determined by the characteristic function of that region or contour. The spectral problem is studied for commuting families of region and contour operators associated with concentric discs and circles of given radius a. Their respective eigenvalues are determined as functions of a, in terms of the Gauss-Laguerre polynomials. These polynomials provide a basis of vectors in a Hilbert space carrying the positive discrete series representation of the algebra su(1, 1) approximate to so(2, 1). The explicit relation between the spectra of operators associated with discs and circles with proportional radii, is given in terms of the discrete variable Meixner polynomials.
Resumo:
This note presents a method of evaluating the distribution of a path integral for Markov chains on a countable state space.