878 resultados para Epoxy-Activated Sepharose 6B-urea
Resumo:
A strain of Pleurotus ostreatus was grown in tomato pomace as sole carbon source for production of laccase. The culture of P. ostreatus revealed a peak of laccase activity (147 U/L of fermentation broth) on the 4th day of culture with a specific activity of 2.8 U/mg protein. Differential chromatographic behaviour of laccase was investigated on affinity chromatographic matrices containing either urea, acetamide, ethanolamine or IDA as affinity ligands. Laccase exhibited retention on such affinity matrices and it was purified on a Sepharose 6B-BDGE-urea column with final enzyme recoveries of about 60%, specific activity of 6.0 and 18.0 U/mg protein and purification factors in the range of 14-46. It was also possible to demonstrate that metal-free laccase did not adsorb to Sepharose 6B-BDGE-urea column which suggests that adsorption of native laccase on this affinity matrix was apparently due to the specific interaction of carbonyl groups available on the matrix with the active site Cu (II) ions of laccase. The kinetic parameters (V (max), K (m) , K (cat), and K (cat)/K (m) ) of the purified enzyme for several substrates were determined as well as laccase stability and optimum pH and temperature of enzyme activity. This is the first report describing the production of laccase from P. ostreatus grown on tomato pomace and purification of this enzyme based on affinity matrix containing urea as affinity ligand.
Resumo:
Glucose 2-oxidase (pyranose oxidase, pyranose: oxygen-2-oxidoreductase, EC 1.1.3.10) from Coriolus versicolor catalyses the oxidation of D-glucose at carbon 2 in the presence of molecular O(2) producing D-glucosone (2-keto-glucose and D-arabino-2-hexosulose) and H(2)O(2). It was used to convert D-glucose into D-glucosone at moderate pressures (i.e. up to 150 bar) with compressed air in a modified commercial batch reactor. Several parameters affecting biocatalysis at moderate pressures were investigated as follows: pressure, [enzyme], [glucose], pH, temperature, nature of fluid and the presence of catalase. Glucose 2-oxidase was purified by immobilized metal affinity chromatography on epoxy-activated Sepharose 6B-IDA-Cu(II) column at pH 6.0. The rate of bioconversion of D-glucose increased with the pressure since an increase in the pressure with compressed air resulted in higher rates of conversion. On the other hand, the presence of catalase increased the rate of reaction which strongly suggests that H(2)O(2) acted as inhibitor for this reaction. The rate of bioconversion of D-glucose by glucose 2-oxidase in the presence of either nitrogen or supercritical CO(2) at 110 bar was very low compared with the use of compressed air at the same pressure. The optimum temperature (55 degrees C) and pH (5.0) of D-glucose bioconversion as well as kinetic parameters for this enzyme were determined under moderate pressure. The activation energy (E(a)) was 32.08 kJmol(-1) and kinetic parameters (V(max), K(m), K(cat) and K(cat)/K(m)) for this bioconversion were 8.8 Umg(-1) protein, 2.95 mM, 30.81 s(-1) and 10,444.06 s(-1)M(-1), respectively. The biomass of C. versicolor as well as the cell-free extract containing glucose 2-oxidase activity were also useful for bioconversion of D-glucose at moderate pressures. The enzyme was apparently stable at moderate pressures since such pressures did not affect significantly the enzyme activity.
Resumo:
The immobilized glucose 2-oxidase (pyranose oxidase, pyranose:oxygen-2-oxidoreductase, EC 1.1.3.10) from Coriolus versicolor was used to convert D-glucose into D-glucosone at moderate pressures, up to 150 bar, with compressed air in a modified commercial batch reactor. Several parameters affecting biocatalysis at moderate pressures were investigated as follows: pressure, different forms of immobilized biocatalysts, glucose concentration, pH, temperature and the presence of catalase. Glucose 2-oxidase (GOX2) was purified by immobilized metal affinity chromatography on epoxy-activated Sepharose 6B-IDA-Cu(II) column at pH 6.0. Purified enzyme and catalase were immobilized into a polyethersulfone (PES) membrane in the presence of glutaraldehyde and gelatin. Enhancement of the bioconversion of D-glucose was done by the pressure since an increase in the pressure with compressed air increases the conversion rates. The optimum temperature and pH for bioconversion of D-glucose were found to be 62 degrees C and pH 6.0, respectively and the activation energy (E(a)) was 28.01 kJ mol(-1). The apparent kinetic constants (V(max)' K(m)', K(cat)' and K(cat)/K(m)') for this bioconversion were 2.27 U mg(-1) protein, 11.15 mM, 8.33 s(-1) and 747.38 s(-1) M(-1), respectively. The immobilized biomass of C. versicolor as well as crude extract containing GOX2 activity were also useful for bioconversion of D-glucose at 65 bar with a yield of 69.9 +/- 3.8% and 91.3 +/- 1.2%, respectively. The immobilized enzyme was apparently stable for several months without any significant loss of enzyme activity. On the other hand, this immobilized enzyme was also stable at moderate pressures, since such pressures did not affect significantly the enzyme activity. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This study investigated the effects of oral treatments of Echinococcus multilocularis-infected mice with the antimalarial drug mefloquine (MEF) and identified proteins that bind to MEF in parasite extracts and human cells by affinity chromatography. In a pilot experiment, MEF treatment was applied 5 days per week and was intensified by increasing the dosage stepwise from 12.5 mg/kg to 200 mg/kg during 4 weeks followed by treatments of 100 mg/kg during the last 7 weeks. This resulted in a highly significant reduction of parasite weight in MEF-treated mice compared with mock-treated mice, but the reduction was significantly less efficacious compared with the standard treatment regimen of albendazole (ABZ). In a second experiment, MEF was applied orally in three different treatment groups at dosages of 25, 50 or 100 mg/kg, but only twice a week, for a period of 12 weeks. Treatment at 100 mg/kg had a profound impact on the parasite, similar to ABZ treatment at 200 mg/kg/day (5 days/week for 12 weeks). No adverse side effects were noted. To identify proteins in E. multilocularis metacestodes that physically interact with MEF, affinity chromatography of metacestode extracts was performed on MEF coupled to epoxy-activated Sepharose(®), followed by SDS-PAGE and in-gel digestion LC-MS/MS. This resulted in the identification of E. multilocularis ferritin and cystatin as MEF-binding proteins. In contrast, when human cells were exposed to MEF affinity chromatography, nicotinamide phosphoribosyltransferase was identified as a MEF-binding protein. This indicates that MEF could potentially interact with different proteins in parasites and human cells.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Phospholipases A(2) (PLA(2)s) are important components of Bothrops snake venoms, that can induce several effects on envenomations such as myotoxicity, inhibition or induction of platelet aggregation and edema. It is known that venomous and non-venomous snakes present PLA(2) inhibitory proteins (PLIs) in their blood plasma. An inhibitory protein that neutralizes the enzymatic and toxic activities of several PLA2s from Bothrops venoms was isolated from Bothrops alternatus snake plasma by affinity chromatography using the immobilized myotoxin BthTX-I on CNBr-activated Sepharose. Biochemical characterization of this inhibitory protein, denominated alpha BaltMIP, showed it to be a glycoprotein with Mr of similar to 24,000 for the monomeric subunit. CD spectra of the PLA(2)/inhibitor complexes are considerably different from those corresponding to the individual proteins and data deconvolution suggests that the complexes had a relative gain of helical structure elements in comparison to the individual protomers, which may indicate a more compact structure upon complexation. Theoretical and experimental structural studies performed in order to obtain insights into the structural features of aBaltMIP indicated that this molecule may potentially trimerize in solution, thus strengthening the hypothesis previously raised by other authors about snake PLIs oligomerization. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
The aim of this work was to devise a one-step purification procedure for monoclonal antibodies (MAbs) of IgG class by immobilized metal affinity chromatography (IMAC). Therefore, several stationary phases were prepared containing immobilized metal chelates in order to study the chromatographic behaviour of MAbs against wild-type amidase from Pseudomonas aeruginosa. Such MAbs adsorbed to Cu(II), Ni(II), Zn(II) and Co(II)-IDA agarose columns. The increase in ligand concentration and the use of longer spacer arms and higher pH values resulted in higher adsorption of MAbs into immobilized metal chelates. The dynamic binding capacity and the maximum binding capacity were 1.33 +/- 0.015 and 3.214 +/- 0.021 mg IgG/mL of sedimented commercial matrix, respectively. A K(D) of 4.53 x 10(-7) M was obtained from batch isotherm measurements. The combination of tailor-made stationary phases of IMAC and the correct selection of adsorption conditions permitted a one-step purification procedure to be devised for MAbs of IgG class. Culture supernatants containing MAbs were purified by IMAC on commercial-Zn(II) and EPI-30-IDA-Zn(II) Sepharose 6B columns and by affinity chromatography on Protein A-Sepharose CL-4B. This MAb preparation revealed on SDS-PAGE two protein bands with M(r) of 50 and 22 kDa corresponding to the heavy and light chains, respectively. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Sera of Chaga's disease patients containing anti-T. cruzi lytic antibodies were submitted to affinity chromatography using Sepharose 4B conjugated with antigen extracted from epimasiigote or trypomasiigote forms of the parasite. Epimastigotes were obtained from culture at the exponential growth phase and the trypomastigotes from blood of infected and immunosuppressed mice. Antigen of both parasite forms was obtained by sonication of the parasites followed by centrifugation. Both antigens were then conjugated to activated Sepharose 4B. Affinity chromatography was performed by passing sera from chagasic patients through an immunoadsorbent column containing either epimasiigote or trypomasiigote antigens. Antibodies bound to the column were eluted with cold 0,2 M glycine buffer pH 2,8. The eluted antibodies were analysed regarding their isotype and lytic activity. The results showed that anti-T. cruzi lytic antibodies present in sera from chagasic patients are mainly located in the IgG isotype and recognize epitopes present in both trypomasiigote and epimastigote forms. A brief report of this work has already been published12.
Resumo:
In order to improve the specificity and sensitivity of the techniques for the human anisakidosis diagnosis, a method of affinity chromatography for the purification of species-specific antigens from Anisakis simplex third-stage larvae (L3) has been developed. New Zealand rabbits were immunized with A. simplex or Ascaris suum antigens or inoculated with Toxocara canis embryonated eggs. The IgG specific antibodies were isolated by means of protein A-Sepharose CL-4B beads columns. IgG anti-A. simplex and -A. suum were coupled to CNBr-activated Sepharose 4B. For the purification of the larval A. simplex antigens, these were loaded into the anti-A. simplex column and bound antigens eluted. For the elimination of the epitopes responsible for the cross-reactions, the A. simplex specific proteins were loaded into the anti-A. suum column. To prove the specificity of the isolated proteins, immunochemical analyses by polyacrylamide gel electrophoresis were carried out. Further, we studied the different responses by ELISA to the different antigenic preparations of A. simplex used, observing their capability of discriminating among the different antisera raised in rabbits (anti-A. simplex, anti-A. suum, anti-T. canis). The discriminatory capability with the anti-T. canis antisera was good using the larval A. simplex crude extract (CE) antigen. When larval A. simplex CE antigen was loaded into a CNBr-activated Sepharose 4B coupled to IgG from rabbits immunized with A. simplex CE antigen, its capability for discriminate between A. simplex and A. suum was improved, increasing in the case of T. canis. The best results were obtained using larval A. simplex CE antigen loaded into a CNBr-activated Sepharose 4B coupled to IgG from rabbits immunized with adult A. suum CE antigen. When we compared the different serum dilution and antigenic concentration, we selected the working serum dilution of 1/400 and 1 µg/ml of antigenic concentration.
Resumo:
Ascaris suum allergenic components (PIII) separated by gel filtration chromatography of an adult worm extract were used to immunize BALB/c mice. Popliteal lymph node cells taken from the immunized animals were fused with SP2/O myeloma cells using polyethylene glycol (MW 1450) as fusogen. The hybridomas were cultured in HAT-containing medium and cloned at limiting dilutions. Supernatants from the growing hybrids were screened by ELISA using plates coated with PIII or the A. suum crude extract. The monoclonal antibody obtained, named MAC-3 (mouse anti-A. suum allergenic component), is an IgG1 kappa mouse immunoglobulin that specifically recognizes a 29,000 molecular weight protein (called allergenic protein) with an affinity constant of 1.7 x 10(9) M-1. The A. suum components recognized by MAC-3 induce specific IgE antibody production in immunized BALB/c mice. Ascitic fluid induced in Swiss mice by injecting ip the hybridoma cells and incomplete Freund's adjuvant was purified by affinity chromatography using a protein A-Sepharose column. The purified monoclonal antibody was then coupled to activated Sepharose beads in order to isolate the A. suum allergenic component from the whole extract by affinity chromatography.
Resumo:
SDS, C12E8, CHAPS or CHAPSO or a combination of two of these detergents is generally used for the solubilization of Na,K-ATPase and other ATPases. Our method using only C12E8 has the advantage of considerable reduction of the time for enzyme purification, with rapid solubilization and purification in a single chromatographic step. Na,K-ATPase-rich membrane fragments of rabbit kidney outer medulla were obtained without adding SDS. Optimum conditions for solubilization were obtained at 4ºC after rapid mixing of 1 mg of membrane Na,K-ATPase with 1 mg of C12E8/ml, yielding 98% recovery of the activity. The solubilized enzyme was purified by gel filtration on a Sepharose 6B column at 4ºC. Non-denaturing PAGE revealed a single protein band with phosphomonohydrolase activity. The molecular mass of the purified enzyme estimated by gel filtration chromatography was 320 kDa. The optimum apparent pH obtained for the purified enzyme was 7.5 for both PNPP and ATP. The dependence of ATPase activity on ATP concentration showed high (K0.5 = 4.0 µM) and low (K0.5 = 1.4 mM) affinity sites for ATP, with negative cooperativity. Ouabain (5 mM), oligomycin (1 µg/ml) and sodium vanadate (3 µM) inhibited the ATPase activity of C12E8-solubilized and purified Na,K-ATPase by 99, 81 and 98.5%, respectively. We have shown that Na,K-ATPase solubilized only with C12E8 can be purified and retains its activity. The activity is consistent with the form of (alphaß)2 association.
Resumo:
Lectin obtained from the marine sponge Tedania ignis was purified and characterized by extraction of soluble proteins (crude extract) in 50mM Borax, pH 7.5. The purification procedure was carried out by crude extract precipitation with ammonium sulfate 30% (FI). The precipitated was resuspended in the same buffer and fractionated with acetone 1.0 volume (F1.0). A lectin was purified from this specific fraction by using an affinity chromatography Sepharose 6B. This lectin preferentially agglutinated human erythrocytes from B type previously treated with papain enzyme. The hemagglutinating activity lectin was dependent of divalent Mn2+ cation and was inhibited by the carbohydrates galactose, xylose and fructose. SDS-PAGE analysis indicated a molecular mass of the lectin around 45 kDa. This protein showed stability until 40°C for 1 h. Further, it showed activity between pH 2.5 and 11.5, with an enhanced activity at pH 7.5. Leishmania chagasi promastigotes stained with Coomassie brilliant blue R-250 were agglutinated by F1,0 and in the presence of galactose this interaction was abolished. These results show that this lectin could be implicated in defense procedures and it will can be used as biological tools in studies with this protozoon
Resumo:
The venom of Crotalus durissus terrificus snakes presents various substances, including a serine protease with thrombin-like activity, called gyroxin, that clots plasmatic fibrinogen and promote the fibrin formation. The aim of this study was to purify and structurally characterize the gyroxin enzyme from Crotalus durissus terrificus venom. For isolation and purification, the following methods were employed: gel filtration on Sephadex G75 column and affinity chromatography on benzamidine Sepharose 6B; 12% SDS-PAGE under reducing conditions; N-terminal sequence analysis; cDNA cloning and expression through RT-PCR and crystallization tests. Theoretical molecular modeling was performed using bioinformatics tools based on comparative analysis of other serine proteases deposited in the NCBI (National Center for Biotechnology Information) database. Protein N-terminal sequencing produced a single chain with a molecular mass of similar to 30 kDa while its full-length cDNA had 714 bp which encoded a mature protein containing 238 amino acids. Crystals were obtained from the solutions 2 and 5 of the Crystal Screen Kit (R), two and one respectively, that reveal the protein constitution of the sample. For multiple sequence alignments of gyroxin-like B2.1 with six other serine proteases obtained from snake venoms (SVSPs), the preservation of cysteine residues and their main structural elements (alpha-helices, beta-barrel and loops) was indicated. The localization of the catalytic triad in His57, Asp102 and Ser198 as well as S1 and S2 specific activity sites in Thr193 and Gli215 amino acids was pointed. The area of recognition and cleavage of fibrinogen in SVSPs for modeling gyroxin B2.1 sequence was located at Arg60, Arg72, Gln75, Arg81, Arg82, Lis85, Glu86 and Lis87 residues. Theoretical modeling of gyroxin fraction generated a classical structure consisting of two alpha-helices, two beta-barrel structures, five disulfide bridges and loops in positions 37, 60, 70, 99, 148, 174 and 218. These results provided information about the functional structure of gyroxin allowing its application in the design of new drugs.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)