950 resultados para Enzymes recombinantes


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract : The chymase-dependant pathway responsible for converting Big ET-1 to ET-1 was established in vitro. It has only been recently, in 2009, that our group demonstrated that the conversion of Big ET-1 to ET-1 (1-31) can occur in vivo in mice (Simard et al., 2009), knowing that ET-1 (1-31) is converted to ET-1 via NEP in vivo (Fecteau et al., 2005). In addition, our laboratory demonstrated in 2013 that mMCP-4, the murine analogue of human chymase, produces ET-1 (1-31) from the Big ET-1 precursor (Houde et al. 2013). Thus far, in the literature, there are no specific characterizations of recombinant chymases (human or murine). In fact, the group of Murakami published in 1995 a study characterizing the CMA1 (human chymase) in a chymostatin-dependent fashion, using Angiotensin I as a substrate (Murakami et al., 1995). However, chymostatin is a non-specific inhibitor of chymase. It has been shown that chymostatin can inhibit elastase, an enzyme that can convert Angiotensin I to Angiotensin II (Becari et al., 2005). Based on these observations, the proposed hypothesis in the present study suggests that recombinant as well as extracted CMA1 from LUVA (human mast cell line), in addition to soluble fractions of human aortas, convert Big ET-1 into ET-1 (1-31 ) in a TY-51469 (a chymase-specific inhibitor) sensitive manner. In a second component, we studied the enzyme kinetics of CMA1 with regard to the Big ET-1 and Ang I substrate. The affinity of CMA1 against Big ET-1 was greater compared to Ang I (KM Big ET- 1: 12.55 μM and Ang I: 37.53 μM). However, CMA1 was more effective in cleaving Ang I compared to Big ET-1 (Kcat / KM Big ET-1: 6.57 x 10-5 μM-1.s-1 and Ang I: 1.8 x 10-4 ΜM-1.s- 1). In a third component involving in vivo experiments, the pressor effects of Big ET-1, ET-1 and Ang I were tested in conscious mMCP-4 KO mice compared to wild-type mice. The increase in mean arterial pressure after administration of Big ET-1 was greater in wild-type mice compared to mMCP- 4 KO mice. This effect was not observed after administration of ET-1 and / or Ang I.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS: Increases in inflammatory markers, hepatic enzymes and physical inactivity are associated with the development of the metabolic syndrome (MetS). We examined whether inflammatory markers and hepatic enzymes are correlated with traditional risk factors for MetS and studied the effects of resistance training (RT) on these emerging risk factors in individuals with a high number of metabolic risk factors (HiMF, 2.9 +/- 0.8) and those with a low number of metabolic risk factors (LoMF, 0.5 +/- 0.5). METHODS: Twenty-eight men and 27 women aged 50.8 +/- 6.5 years (mean +/- sd) participated in the study. Participants were randomized to four groups, HiMF training (HiMFT), HiMF control (HiMFC), LoMF training (LoMFT) and LoMF control (LoMFC). Before and after 10 weeks of RT [3 days/week, seven exercises, three sets with intensity gradually increased from 40-50% of one repetition maximum (1RM) to 75-85% of 1RM], blood samples were obtained for the measurement of pro-inflammatory cytokines, C-reactive protein (CRP), gamma-glutamyltransferase (GGT) and alanine aminotransferase (ALT). RESULTS: At baseline, HiMF had higher interleukin-6 (33.9%), CRP (57.1%), GGT (45.2%) and ALT (40.6%) levels, compared with LoMF (all P < 0.05). CRP, GGT and ALT correlated with the number of risk factors (r = 0.48, 0.51 and 0.57, respectively, all P < 0.01) and with other anthropometric and clinical measures (r range from 0.26 to 0.60, P < 0.05). RT did not significantly alter inflammatory markers or hepatic enzymes (all P > 0.05). CONCLUSIONS: HiMF was associated with increased inflammatory markers and hepatic enzyme concentrations. RT did not reduce inflammatory markers and hepatic enzymes in individuals with HiMF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Migraine is a common debilitating primary headache disorder with significant mental, physical and social health implications. The brain neurotransmitter 5-hydroxytryptamine (5-HT; serotonin) is involved in nociceptive pathways and has been implicated in the pathophysiology of migraine. With few genetic studies investigating biosynthetic and metabolic enzymes governing the rate of 5-HT activity and their relationship to migraine, it was the objective of this study to assess genetic variants within the human tryptophan hydroxylase (TPH), amino acid decarboxylase (AADC) and monoamine oxidase A (MAOA) genes in migraine susceptibility. This objective was undertaken using a high-throughput DNA pooling experimental design, which proved to be a very accurate, sensitive and specific method of estimating allele frequencies for single nucleotide polymorphism, insertion deletion and variable number tandem repeat loci. Application of DNA pooling to a wide array of genetic loci provides greater scope in the assessment of population-based genetic association study designs. Despite the application of this high-throughput genotyping method, negative results from the two-stage DNA pooling design used to screen loci within the TPH, AADC and MAOA genes did not support their role in migraine susceptibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asthma is chronic inflammatory disease of the lower airways that is both, genetically inherited and environmentally influenced. This project investigated how molecular mechanisms known to be influenced both genetically and environmentally, contribute to the onset of asthma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tobacco smoking, alcohol drinking, and occupational exposures to polycyclic aromatic hydrocarbons are the major proven risk factors for human head and neck squamous-cell cancer (HNSCC). Major research focus on gene-environment interactions concerning HNSCC has been on genes encoding enzymes of metabolism for tobacco smoke constituents and repair enzymes. To investigate the role of genetically determined individual predispositions in enzymes of xenobiotic metabolism and in repair enzymes under the exogenous risk factor tobacco smoke in the carcinogenesis of HNSCC, we conducted a case-control study on 312 cases and 300 noncancer controls. We focused on the impact of 22 sequence variations in CYP1A1, CYP1B1, CYP2E1, ERCC2/XPD, GSTM1, GSTP1, GSTT1, NAT2, NQO1, and XRCC1. To assess relevant main and interactive effects of polymorphic genes on the susceptibility to HNSCC we used statistical models such as logic regression and a Bayesian version of logic regression. In subgroup analysis of nonsmokers, main effects in ERCC2 (Lys751Gln) C/C genotype and combined ERCC2 (Arg156Arg) C/A and A/A genotypes were predominant. When stratifying for smokers, the data revealed main effects on combined CYP1B1 (Leu432Val) C/G and G/G genotypes, followed by CYP1B1 (Leu432Val) G/G genotype and CYP2E1 (-70G>T) G/T genotype. When fitting logistic regression models including relevant main effects and interactions in smokers, we found relevant associations of CYP1B1 (Leu432Val) C/G genotype and CYP2E1 (-70G>T) G/T genotype (OR, 10.84; 95% CI, 1.64-71.53) as well as CYP1B1 (Leu432Val) G/G genotype and GSTM1 null/null genotype (OR, 11.79; 95% CI, 2.18-63.77) with HNSCC. The findings underline the relevance of genotypes of polymorphic CYP1B1 combined with exposures to tobacco smoke.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human cytochrome P450 (P450) enzymes are involved in the oxidation of natural products found in foods, beverages, and tobacco products and their catalytic activities can also be modulated by components of the materials. The microsomal activation of aflatoxin B1 to the exo-3,9-epoxide is stimulated by flavone and 7,8-benzoflavone, and attenuated by the flavonoid naringenin, a major component of grapefruit. P4502E1 has been demonstrated to play a potentially major role in the activation of a number of very low-molecular weight cancer suspects, including ethyl carbamate (urethan), which is present in alcoholic beverages and particularly stone brandies. The enzyme (P4502E1) is also known to be inducible by ethanol. Tobacco contains a large number of potential carcinogens. In human liver microsomes a significant role for P4501A2 can be demonstrated in the activation of cigarette smoke condensate. Some of the genotoxicity may be due to arylamines. P4501A2 is also inhibited by components of crude cigarette smoke condensate. The tobacco-specific nitrosamines are activated by a number of P450 enzymes. Of those known to be present in human liver, P4501A2, 2A6, and 2E1 can activate these nitrosamines to genotoxic products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytochrome P450 (P450) enzymes are involved in the oxidations of numerous steroids, eicosanoids, alkaloids, and other endogenous substrates. These enzymes are also the major ones involved in the oxidation of potential toxicants and carcinogens such as those encountered among pollutants, solvents, and pesticides, as well as many natural products. A proper understanding of the basic mechanisms by which the P450 enzymes oxidize such compounds is important in developing rational strategies for the evaluation of the risks of these compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 34-year-old female patient with a three year history of generalized granuloma annulare was treated systemically with dapsone (DADPS). Six weeks after the onset of treatment, the patient developed an extensive tonsillitis of the base of the tongue with fever and malaise. Routine laboratory work showed a leukocytopenia with agranulocytosis. Further investigation revealed a marked decrease of the enzyme activity of N-acetyltransferase 2, which plays an important role in dapsone metabolism. Treatment included the cessation of dapsone, antibiotic coverage, and G-CSF leading to the rapid improvement of symptoms and normalization of leukocyte counts. Dapsone-induced angina agranulocytotica is a rare event and is interpreted as an idiosyncratic reaction. Depending on genetic polymorphisms of various enzymes, dapsone can be metabolized to immunologically or toxicologically relevant intermediates. Because of the risk of severe hematologic reactions, dapsone should only be employed for solid indications and with appropriate monitoring. [Article in German]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coffee components kahweol and cafestol (K/C) have been reported to protect the colon and other organs of the rat against the formation of DNA adducts by 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (PhIP) and aflatoxin B1. PhIP is a cooked-food mutagen to which significant human exposure and a role in colon cancer etiology are attributed, and, interestingly, such cancers appear to develop at a lower rate in consumers of coffees with high amounts of K/C. Earlier studies in rodent liver have shown that a key role in the chemopreventive effect of K/C is likely to be due to the potential of these compounds to induce the detoxification of xenobiotics by glutathione transferase (GST) and to enhance the synthesis of the corresponding co-factor glutathione. However, mutagens like PhIP may also be detoxified by UDP-glucuronosyl transferase (UDPGT) for which data are lacking regarding a potential effect of K/C. Therefore, in the present study, we investigated the effect of K/C on UDPGT and, concomitantly, we studied overall GST and the pattern of individual GST classes, particularly GST-θ, which was not included in earlier experiments. In addition, we analyzed the organ-dependence of these potentially chemopreventive effects. K/C was fed to male F344 rats at 0.122% in the chow for 10 days. Enzyme activities in liver, kidney, lung, colon, salivary gland, pancreas, testis, heart and spleen were quantified using five characteristic substrates and the hepatic protein pattern of GST classes α, μ, and π was studied with affnity chromatography/HPLC. Our study showed that K/C is not only capable of increasing overall GST and GST classes α, μ, and π but also of enhancing UDGPT and GST-θ. All investigated K/C effects were strongest in liver and kidney, and some response was seen in lung and colon but none in the other organs. In summary, our results show that K/C treatment leads to a wide spectrum of increases in phase II detoxification enzymes. Notably, these effects occurred preferentially in the well perfused organs liver and kidney, which may thus not only contribute to local protection but also to anti-carcinogenesis in distant, less stimulated organs such as the colon.