881 resultados para Entropy estimation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we propose a novel filter for feature selection. Such filter relies on the estimation of the mutual information between features and classes. We bypass the estimation of the probability density function with the aid of the entropic-graphs approximation of Rényi entropy, and the subsequent approximation of the Shannon one. The complexity of such bypassing process does not depend on the number of dimensions but on the number of patterns/samples, and thus the curse of dimensionality is circumvented. We show that it is then possible to outperform a greedy algorithm based on the maximal relevance and minimal redundancy criterion. We successfully test our method both in the contexts of image classification and microarray data classification.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Consider a network of unreliable links, modelling for example a communication network. Estimating the reliability of the network-expressed as the probability that certain nodes in the network are connected-is a computationally difficult task. In this paper we study how the Cross-Entropy method can be used to obtain more efficient network reliability estimation procedures. Three techniques of estimation are considered: Crude Monte Carlo and the more sophisticated Permutation Monte Carlo and Merge Process. We show that the Cross-Entropy method yields a speed-up over all three techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose a fast adaptive importance sampling method for the efficient simulation of buffer overflow probabilities in queueing networks. The method comprises three stages. First, we estimate the minimum cross-entropy tilting parameter for a small buffer level; next, we use this as a starting value for the estimation of the optimal tilting parameter for the actual (large) buffer level. Finally, the tilting parameter just found is used to estimate the overflow probability of interest. We study various properties of the method in more detail for the M/M/1 queue and conjecture that similar properties also hold for quite general queueing networks. Numerical results support this conjecture and demonstrate the high efficiency of the proposed algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Copyright © 2014 Entomological Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many texture measures have been developed and used for improving land-cover classification accuracy, but rarely has research examined the role of textures in improving the performance of aboveground biomass estimations. The relationship between texture and biomass is poorly understood. This paper used Landsat Thematic Mapper (TM) data to explore relationships between TM image textures and aboveground biomass in Rondônia, Brazilian Amazon. Eight grey level co-occurrence matrix (GLCM) based texture measures (i.e., mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment, and correlation), associated with seven different window sizes (5x5, 7x7, 9x9, 11x11, 15x15, 19x19, and 25x25), and five TM bands (TM 2, 3, 4, 5, and 7) were analyzed. Pearson's correlation coefficient was used to analyze texture and biomass relationships. This research indicates that most textures are weakly correlated with successional vegetation biomass, but some textures are significantly correlated with mature forest biomass. In contrast, TM spectral signatures are significantly correlated with successional vegetation biomass, but weakly correlated with mature forest biomass. Our findings imply that textures may be critical in improving mature forest biomass estimation, but relatively less important for successional vegetation biomass estimation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study model selection strategies based on penalized empirical loss minimization. We point out a tight relationship between error estimation and data-based complexity penalization: any good error estimate may be converted into a data-based penalty function and the performance of the estimate is governed by the quality of the error estimate. We consider several penalty functions, involving error estimates on independent test data, empirical {\sc vc} dimension, empirical {\sc vc} entropy, andmargin-based quantities. We also consider the maximal difference between the error on the first half of the training data and the second half, and the expected maximal discrepancy, a closely related capacity estimate that can be calculated by Monte Carlo integration. Maximal discrepancy penalty functions are appealing for pattern classification problems, since their computation is equivalent to empirical risk minimization over the training data with some labels flipped.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Image registration has been proposed as an automatic method for recovering cardiac displacement fields from Tagged Magnetic Resonance Imaging (tMRI) sequences. Initially performed as a set of pairwise registrations, these techniques have evolved to the use of 3D+t deformation models, requiring metrics of joint image alignment (JA). However, only linear combinations of cost functions defined with respect to the first frame have been used. In this paper, we have applied k-Nearest Neighbors Graphs (kNNG) estimators of the -entropy (H ) to measure the joint similarity between frames, and to combine the information provided by different cardiac views in an unified metric. Experiments performed on six subjects showed a significantly higher accuracy (p < 0.05) with respect to a standard pairwise alignment (PA) approach in terms of mean positional error and variance with respect to manually placed landmarks. The developed method was used to study strains in patients with myocardial infarction, showing a consistency between strain, infarction location, and coronary occlusion. This paper also presentsan interesting clinical application of graph-based metric estimators, showing their value for solving practical problems found in medical imaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les travaux portent sur l’estimation de la variance dans le cas d’une non- réponse partielle traitée par une procédure d’imputation. Traiter les valeurs imputées comme si elles avaient été observées peut mener à une sous-estimation substantielle de la variance des estimateurs ponctuels. Les estimateurs de variance usuels reposent sur la disponibilité des probabilités d’inclusion d’ordre deux, qui sont parfois difficiles (voire impossibles) à calculer. Nous proposons d’examiner les propriétés d’estimateurs de variance obtenus au moyen d’approximations des probabilités d’inclusion d’ordre deux. Ces approximations s’expriment comme une fonction des probabilités d’inclusion d’ordre un et sont généralement valides pour des plans à grande entropie. Les résultats d’une étude de simulation, évaluant les propriétés des estimateurs de variance proposés en termes de biais et d’erreur quadratique moyenne, seront présentés.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis investigates the potential use of zerocrossing information for speech sample estimation. It provides 21 new method tn) estimate speech samples using composite zerocrossings. A simple linear interpolation technique is developed for this purpose. By using this method the A/D converter can be avoided in a speech coder. The newly proposed zerocrossing sampling theory is supported with results of computer simulations using real speech data. The thesis also presents two methods for voiced/ unvoiced classification. One of these methods is based on a distance measure which is a function of short time zerocrossing rate and short time energy of the signal. The other one is based on the attractor dimension and entropy of the signal. Among these two methods the first one is simple and reguires only very few computations compared to the other. This method is used imtea later chapter to design an enhanced Adaptive Transform Coder. The later part of the thesis addresses a few problems in Adaptive Transform Coding and presents an improved ATC. Transform coefficient with maximum amplitude is considered as ‘side information’. This. enables more accurate tfiiz assignment enui step—size computation. A new bit reassignment scheme is also introduced in this work. Finally, sum ATC which applies switching between luiscrete Cosine Transform and Discrete Walsh-Hadamard Transform for voiced and unvoiced speech segments respectively is presented. Simulation results are provided to show the improved performance of the coder

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a general framework for discriminative estimation based on the maximum entropy principle and its extensions. All calculations involve distributions over structures and/or parameters rather than specific settings and reduce to relative entropy projections. This holds even when the data is not separable within the chosen parametric class, in the context of anomaly detection rather than classification, or when the labels in the training set are uncertain or incomplete. Support vector machines are naturally subsumed under this class and we provide several extensions. We are also able to estimate exactly and efficiently discriminative distributions over tree structures of class-conditional models within this framework. Preliminary experimental results are indicative of the potential in these techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the theoretical development of a nonlinear adaptive filter based on a concept of filtering by approximated densities (FAD). The most common procedures for nonlinear estimation apply the extended Kalman filter. As opposed to conventional techniques, the proposed recursive algorithm does not require any linearisation. The prediction uses a maximum entropy principle subject to constraints. Thus, the densities created are of an exponential type and depend on a finite number of parameters. The filtering yields recursive equations involving these parameters. The update applies the Bayes theorem. Through simulation on a generic exponential model, the proposed nonlinear filter is implemented and the results prove to be superior to that of the extended Kalman filter and a class of nonlinear filters based on partitioning algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synthetic Aperture Radar (SAR) images a target region reflectivity function in the multi-dimensional spatial domain of range and cross-range. SAR synthesizes a large aperture radar in order to achieve a finer azimuth resolution than the one provided by any on-board real antenna. Conventional SAR techniques assume a single reflection of transmitted waveforms from targets. Nevertheless, today¿s new scenes force SAR systems to work in urban environments. Consequently, multiple-bounce returns are added to directscatter echoes. We refer to these as ghost images, since they obscure true target image and lead to poor resolution. By analyzing the quadratic phase error (QPE), this paper demonstrates that Earth¿s curvature influences the defocusing degree of multipath returns. In addition to the QPE, other parameters such as integrated sidelobe ratio (ISLR), peak sidelobe ratio (PSLR), contrast (C) and entropy (E) provide us with the tools to identify direct-scatter echoes in images containing undesired returns coming from multipath.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Cross-Entropy (CE) is an efficient method for the estimation of rare-event probabilities and combinatorial optimization. This work presents a novel approach of the CE for optimization of a Soft-Computing controller. A Fuzzy controller was designed to command an unmanned aerial system (UAS) for avoiding collision task. The only sensor used to accomplish this task was a forward camera. The CE is used to reach a near-optimal controller by modifying the scaling factors of the controller inputs. The optimization was realized using the ROS-Gazebo simulation system. In order to evaluate the optimization a big amount of tests were carried out with a real quadcopter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe methods for estimating the parameters of Markovian population processes in continuous time, thus increasing their utility in modelling real biological systems. A general approach, applicable to any finite-state continuous-time Markovian model, is presented, and this is specialised to a computationally more efficient method applicable to a class of models called density-dependent Markov population processes. We illustrate the versatility of both approaches by estimating the parameters of the stochastic SIS logistic model from simulated data. This model is also fitted to data from a population of Bay checkerspot butterfly (Euphydryas editha bayensis), allowing us to assess the viability of this population. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose a fast adaptive Importance Sampling method for the efficient simulation of buffer overflow probabilities in queueing networks. The method comprises three stages. First we estimate the minimum Cross-Entropy tilting parameter for a small buffer level; next, we use this as a starting value for the estimation of the optimal tilting parameter for the actual (large) buffer level; finally, the tilting parameter just found is used to estimate the overflow probability of interest. We recognize three distinct properties of the method which together explain why the method works well; we conjecture that they hold for quite general queueing networks. Numerical results support this conjecture and demonstrate the high efficiency of the proposed algorithm.