903 resultados para Engineering and Physical Sciences Research Council (EPSRC)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main drivers for the development and evolution of Cyber Physical Systems (CPS) are the reduction of development costs and time along with the enhancement of the designed products. The aim of this survey paper is to provide an overview of different types of system and the associated transition process from mechatronics to CPS and cloud-based (IoT) systems. It will further consider the requirement that methodologies for CPS-design should be part of a multi-disciplinary development process within which designers should focus not only on the separate physical and computational components, but also on their integration and interaction. Challenges related to CPS-design are therefore considered in the paper from the perspectives of the physical processes, computation and integration respectively. Illustrative case studies are selected from different system levels starting with the description of the overlaying concept of Cyber Physical Production Systems (CPPSs). The analysis and evaluation of the specific properties of a sub-system using a condition monitoring system, important for the maintenance purposes, is then given for a wind turbine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Engineering and Physical Sciences Research Council (EPSRC) extending quality of life (EQUAL) initiative, specifically supports interdisciplinary user-focused design, engineering and technology research concerned with enhancing the independence and quality of life of older and disabled people. This paper briefly describes a recent programme to encourage the adoption of a broader perspective on the lives and needs of older people that have been pursued by EPSRC through its extending quality life (EQUAL) initiative. EPSRC is the principle supporter design, engineering and technology research in UK universities. The paper illustrates the scope of EQUAL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – The purpose of this paper is to propose a process model for knowledge transfer in using theories relating knowledge communication and knowledge translation. Design/methodology/approach – Most of what is put forward in this paper is based on a research project titled “Procurement for innovation and knowledge transfer (ProFIK)”. The project is funded by a UK government research council – The Engineering and Physical Sciences Research Council (EPSRC). The discussions are mainly grounded on a thorough review of literature accomplished as part of the research project. Findings – The process model developed in this paper has built upon the theory of knowledge transfer and the theory of communication. Knowledge transfer, per se, is not a mere transfer of knowledge. It involves different stages of knowledge transformation. Depending on the context of knowledge transfer, it can also be influenced by many factors; some positive and some negative. The developed model of knowledge transfer attempts to encapsulate all these issues in order to create a holistic framework. Originality/value of paper – An attempt has been made in the paper to combine some of the significant theories or findings relating to knowledge transfer together, making the paper an original and valuable one.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We would like to thank all interviewees for sharing their experiences of working with academics, and the guest editor and three anonymous reviewers for valuable comments on earlier versions of the work. The research in this paper is supported by the RCUK dot.rural Digital economy Research Hub, University of Aberdeen (Grant reference: EP/G066051/1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We would like to thank all interviewees for sharing their experiences of working with academics, and the guest editor and three anonymous reviewers for valuable comments on earlier versions of the work. The research in this paper is supported by the RCUK dot.rural Digital economy Research Hub, University of Aberdeen (Grant reference: EP/G066051/1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acknowledgements We thank Andrew Spink (Noldus Information Technology) and the Blogging Birds team members Peter Kindness and Abdul Adeniyi for their valuable contributions to this paper. John Fryxell, Chris Thaxter and Arjun Amar provided valuable comments on an earlier version. The study was part of the Digital Conservation project of dot.rural, the University of Aberdeen’s Digital Economy Research Hub, funded by RCUK (grant reference EP/G066051/1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

© 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Acknowledgments The authors thank H. H. Nguyen for his early development work on the BeeWatch interface; E. O'Mahony, I. Pearce, and R. Comont for identifying numerous photographed bumblebees; B. Darvill, D. Ewing, and G. Perkins for enabling our partnership with the Bumblebee Conservation Trust; and S. Blake for his investments in developing the NLG feedback. The study was part of the Digital Conservation project of dot.rural, the University of Aberdeen's Digital Economy Research Hub, funded by RCUK (grant reference EP/G066051/1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Worldwide floods have become one of the costliest weather-related hazards, causing large-scale human, economic, and environmental damage during the recent past. Recent years have seen a large number of such flood events around the globe, with Europe and the United Kingdom being no exception. Currently, about one in six properties in England is at risk of flooding (EA, 2009), and the risk is expected to further increase in the future (Evans et al., 2004). Although public spending on community-level flood protection has increased and some properties are protected by such protection schemes, many properties at risk of flooding may still be left without adequate protection. As far as businesses are concerned, this has led to an increased need for implementing strategies for property-level flood protection and business continuity, in order to improve their capacity to survive a flood hazard. Small and medium-sized enterprises (SMEs) constitute a significant portion of the UK business community. In the United Kingdom, more than 99% of private sector enterprises fall within the category of SMEs (BERR, 2008). They account for more than half of employment creation (59%) and turnover generation (52%) (BERR, 2008), and are thus considered the backbone of the UK economy. However, they are often affected disproportionately by natural hazards when compared with their larger counterparts (Tierney and Dahlhamer, 1996; Webb, Tierney, and Dahlhamer, 2000; Alesch et al., 2001) due to their increased vulnerability. Previous research reveals that small businesses are not adequately prepared to cope with the risk of natural hazards and to recover following such events (Tierney and Dahlhamer, 1996; Alesch et al., 2001; Yoshida and Deyle, 2005; Crichton, 2006; Dlugolecki, 2008). For instance, 90% of small businesses do not have adequate insurance coverage for their property (AXA Insurance UK, 2008) and only about 30% have a business continuity plan (Woodman, 2008). Not being adequately protected by community-level flood protection measures as well as property- and business-level protection measures threatens the survival of SMEs, especially those located in flood risk areas. This chapter discusses the potential effects of flood hazards on SMEs and the coping strategies that the SMEs can undertake to ensure the continuity of their business activities amid flood events. It contextualizes this discussion within a survey conducted under the Engineering and Physical Sciences Research Council (EPSRC) funded research project entitled “Community Resilience to Extreme Weather — CREW”.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project is funded by European Research Council in FP7; grant no 259328, 2010 and EPSRC grant no EP/K006428/1, 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work is supported in part by NSFC (Grant no. 61172070), IRT of Shaanxi Province (2013KCT-04), EPSRC (Grant no.Ep/1032606/1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project is funded by European Research Council in FP7; grant no 259328, 2010 and EPSRC grant no EP/K006428/1, 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work is supported in part by NSFC (Grant no. 61172070), IRT of Shaanxi Province (2013KCT-04), EPSRC (Grant no.Ep/1032606/1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ACKNOWLEDGEMENTS The authors are grateful to the following bodies that provided financial support for the project: (i) China Scholarship Council, (ii) National Natural Science Foundation of China (Grant No. U1334201 and (iii) UK Engineering and Physical Sciences Research Council (Grant No. EP/G069441/1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acknowledgements The research reported in this paper was conducted as part of a collaborative research project involving the Universities of Aberdeen and Nottingham in the UK, funded by the UK's Engineering and Physical Sciences Research Council (EPSRC grants EP/E011330/1 and EP/E010407/1). Riccardo Briganti acknowledges support through an EPSRC Career Acceleration Fellowship (EP/I004505/1). The paper has benefitted from the helpful comments provided by Professor Tom Baldock and an anonymous reviewer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acknowledgments The authors acknowledge the support from Engineering and Physical Sciences Research Council, grant number EP/M002322/1. The authors would also like to thank Numerical Analysis Group at the Rutherford Appleton Laboratory for their FORTRAN HSL packages (HSL, a collection of Fortran codes for large-scale scientific computation. See http://www.hsl.rl.ac.uk/).