812 resultados para Energy Consumption Management System
Resumo:
DRAM technology faces density and power challenges to increase capacity because of limitations of physical cell design. To overcome these limitations, system designers are exploring alternative solutions that combine DRAM and emerging NVRAM technologies. Previous work on heterogeneous memories focuses, mainly, on two system designs: PCache, a hierarchical, inclusive memory system, and HRank, a flat, non-inclusive memory system. We demonstrate that neither of these designs can universally achieve high performance and energy efficiency across a suite of HPC workloads. In this work, we investigate the impact of a number of multilevel memory designs on the performance, power, and energy consumption of applications. To achieve this goal and overcome the limited number of available tools to study heterogeneous memories, we created HMsim, an infrastructure that enables n-level, heterogeneous memory studies by leveraging existing memory simulators. We, then, propose HpMC, a new memory controller design that combines the best aspects of existing management policies to improve performance and energy. Our energy-aware memory management system dynamically switches between PCache and HRank based on the temporal locality of applications. Our results show that HpMC reduces energy consumption from 13% to 45% compared to PCache and HRank, while providing the same bandwidth and higher capacity than a conventional DRAM system.
Resumo:
The recent changes on power systems paradigm requires the active participation of small and medium players in energy management. With an electricity price fluctuation these players must manage the consumption. Lowering costs and ensuring adequate user comfort levels. Demand response can improve the power system management and bring benefits for the small and medium players. The work presented in this paper, which is developed aiming the smart grid context, can also be used in the current power system paradigm. The proposed system is the combination of several fields of research, namely multi-agent systems and artificial neural networks. This system is physically implemented in our laboratories and it is used daily by researchers. The physical implementation gives the system an improvement in the proof of concept, distancing itself from the conventional systems. This paper presents a case study illustrating the simulation of real-time pricing in a laboratory.
Resumo:
Power electronics plays an important role in the control and conversion of modern electric power systems. In particular, to integrate various renewable energies using DC transmissions and to provide more flexible power control in AC systems, significant efforts have been made in the modulation and control of power electronics devices. Pulse width modulation (PWM) is a well developed technology in the conversion between AC and DC power sources, especially for the purpose of harmonics reduction and energy optimization. As a fundamental decoupled control method, vector control with PI controllers has been widely used in power systems. However, significant power loss occurs during the operation of these devices, and the loss is often dissipated in the form of heat, leading to significant maintenance effort. Though much work has been done to improve the power electronics design, little has focused so far on the investigation of the controller design to reduce the controller energy consumption (leading to power loss in power electronics) while maintaining acceptable system performance. This paper aims to bridge the gap and investigates their correlations. It is shown a more thoughtful controller design can achieve better balance between energy consumption in power electronics control and system performance, which potentially leads to significant energy saving for integration of renewable power sources.
Resumo:
Atualmente a energia é considerada um vetor estratégico nas diversas organizações. Assim sendo, a gestão e a utilização racional da energia são consideradas instrumentos fundamentais para a redução dos consumos associados aos processos de produção do sector industrial. As ações de gestão energética não deverão ficar pela fase do projeto das instalações e dos meios de produção, mas sim acompanhar a atividade da Empresa. A gestão da energia deve ser sustentada com base na realização regular de diagnósticos energéticos às instalações consumidoras e concretizada através de planos de atuação e de investimento que apresentem como principal objetivo a promoção da eficiência energética, conduzindo assim à redução dos respetivos consumos e, consequentemente, à redução da fatura energética. Neste contexto, a utilização de ferramentas de apoio à gestão de energia promovem um consumo energético mais racional, ou seja, promovem a eficiência energética e é neste sentido que se insere este trabalho. O presente trabalho foi desenvolvido na Empresa RAR Açúcar e apresentou como principais objetivos: a reformulação do Sistema de Gestão de Consumos de Energia da Empresa, a criação de um modelo quantitativo que permitisse ao Gestor de Energia prever os consumos anuais de água, fuelóleo e eletricidade da Refinaria e a elaboração de um plano de consumos para o ano de 2014 a partir do modelo criado. A reformulação do respetivo Sistema de Gestão de Consumos resultou de um conjunto de etapas. Numa primeira fase foi necessário efetuar uma caraterização e uma análise do atual Sistema de Gestão de Consumos da Empresa, sistema composto por um conjunto de sete ficheiros de cálculo do programa Microsoft Excel©. Terminada a análise, selecionada a informação pertinente e propostas todas as melhorias a introduzir nos ficheiros, procedeu-se à reformulação do respetivo SGE, reduzindo-se o conjunto de ficheiros de cálculo para apenas dois ficheiros, um onde serão efetuados e visualizados todos os registos e outro onde serão realizados os cálculos necessários para o controlo energético da Empresa. O novo Sistema de Gestão de Consumos de Energia será implementado no início do ano de 2015. Relativamente às alterações propostas para as folhas de registos manuais, estas já foram implementadas pela Empresa. Esta aplicação prática mostrou-se bastante eficiente uma vez que permitiu grandes melhorias processuais nomeadamente, menores tempos de preenchimento das mesmas e um encurtamento das rotas efetuadas diariamente pelos operadores. Através do levantamento efetuado aos diversos contadores foi possível identificar todas as áreas onde será necessário a sua instalação e a substituição de todos os contadores avariados, permitindo deste modo uma contabilização mais precisa de todos os consumos da Empresa. Com esta reestruturação o Sistema de Gestão de Consumos tornou-se mais dinâmico, mais claro e, principalmente, mais eficiente. Para a criação do modelo de previsão de consumos da Empresa foi necessário efetuar-se um levantamento dos consumos históricos de água, eletricidade, fuelóleo e produção de açúcar de dois anos. Após este levantamento determinaram-se os consumos específicos de água, fuelóleo e eletricidade diários (para cada semana dos dois anos) e procedeu-se à caracterização destes consumos por tipo de dia. Efetuada a caracterização definiu-se para cada tipo de dia um consumo específico médio com base nos dois anos. O modelo de previsão de consumos foi criado com base nos consumos específicos médios dos dois anos correspondentes a cada tipo de dia. Procedeu-se por fim à verificação do modelo, comparando-se os consumos obtidos através do modelo (consumos previstos) com os consumos reais de cada ano. Para o ano de 2012 o modelo apresenta um desvio de 6% na previsão da água, 12% na previsão da eletricidade e de 6% na previsão do fuelóleo. Em relação ao ano de 2013, o modelo apresenta um erro de 1% para a previsão dos consumos de água, 8% para o fuelóleo e de 1% para a eletricidade. Este modelo permitirá efetuar contratos de aquisição de energia elétrica com maior rigor o que conduzirá a vantagens na sua negociação e consequentemente numa redução dos custos resultantes da aquisição da mesma. Permitirá também uma adequação dos fluxos de tesouraria à necessidade reais da Empresa, resultante de um modelo de previsão mais rigoroso e que se traduz numa mais-valia financeira para a mesma. Foi também proposto a elaboração de um plano de consumos para o ano de 2014 a partir do modelo criado em função da produção prevista para esse mesmo ano. O modelo apresenta um desvio de 24% na previsão da água, 0% na previsão da eletricidade e de 28% na previsão do fuelóleo.
Resumo:
The contribution of buildings towards total worldwide energy consumption in developed countries is between 20% and 40%. Heating Ventilation and Air Conditioning (HVAC), and more specifically Air Handling Units (AHUs) energy consumption accounts on average for 40% of a typical medical device manufacturing or pharmaceutical facility’s energy consumption. Studies have indicated that 20 – 30% energy savings are achievable by recommissioning HVAC systems, and more specifically AHU operations, to rectify faulty operation. Automated Fault Detection and Diagnosis (AFDD) is a process concerned with potentially partially or fully automating the commissioning process through the detection of faults. An expert system is a knowledge-based system, which employs Artificial Intelligence (AI) methods to replicate the knowledge of a human subject matter expert, in a particular field, such as engineering, medicine, finance and marketing, to name a few. This thesis details the research and development work undertaken in the development and testing of a new AFDD expert system for AHUs which can be installed in minimal set up time on a large cross section of AHU types in a building management system vendor neutral manner. Both simulated and extensive field testing was undertaken against a widely available and industry known expert set of rules known as the Air Handling Unit Performance Assessment Rules (APAR) (and a later more developed version known as APAR_extended) in order to prove its effectiveness. Specifically, in tests against a dataset of 52 simulated faults, this new AFDD expert system identified all 52 derived issues whereas the APAR ruleset identified just 10. In tests using actual field data from 5 operating AHUs in 4 manufacturing facilities, the newly developed AFDD expert system for AHUs was shown to identify four individual fault case categories that the APAR method did not, as well as showing improvements made in the area of fault diagnosis.
Resumo:
This paper proposes a hierarchical energy management system for multi-source multi-product (MSMP) microgrids. Traditional energy hub based scheduling method is combined with a hierarchical control structure to incorporate transient characteristics of natural gas flow and dynamics of energy converters in microgrids. The hierarchical EMS includes a supervisory control layer, an optimizing control layer, and an execution control layer. In order to efficiently accommodate the systems multi time-scale characteristics, the optimizing control layer is decomposed into three sub-layers: slow, medium and fast. Thermal, gas and electrical management systems are integrated into the slow, medium, and fast control layer, respectively. Compared with wind energy, solar energy is easier to integrate and more suitable for the microgrid environment, therefore, potential impacts of the hierarchical EMS on MSMP microgrids is investigated based on a building energy system integrating photovoltaic and microturbines. Numerical studies indicate that by using a hierarchical EMS, MSMP microgrids can be economically operated. Also, interactions among thermal, gas, and electrical system can be effectively managed.
Resumo:
Future distribution systems will have to deal with an intensive penetration of distributed energy resources ensuring reliable and secure operation according to the smart grid paradigm. SCADA (Supervisory Control and Data Acquisition) is an essential infrastructure for this evolution. This paper proposes a new conceptual design of an intelligent SCADA with a decentralized, flexible, and intelligent approach, adaptive to the context (context awareness). This SCADA model is used to support the energy resource management undertaken by a distribution network operator (DNO). Resource management considers all the involved costs, power flows, and electricity prices, allowing the use of network reconfiguration and load curtailment. Locational Marginal Prices (LMP) are evaluated and used in specific situations to apply Demand Response (DR) programs on a global or a local basis. The paper includes a case study using a 114 bus distribution network and load demand based on real data.
Resumo:
The global warming due to high CO2 emission in the last years has made energy saving a global problem nowadays. However, manufacturing processes such as pultrusion necessarily needs heat for curing the resin. Then, the only option available is to apply all efforts to make the process even more efficient. Different heating systems have been used on pultrusion, however, the most widely used are the planar resistances. The main objective of this study is to develop another heating system and compares it with the former one. Thermography was used in spite of define the temperature profile along the die. FEA (finite element analysis) allows to understand how many energy is spend with the initial heating system. After this first approach, changes were done on the die in order to test the new heating system and to check possible quality problems on the product. Thus, this work allows to conclude that with the new heating system a significant reduction in the setup time is now possible and an energy reduction of about 57% was achieved.
Resumo:
The recent changes concerning the consumers’ active participation in the efficient management of load devices for one’s own interest and for the interest of the network operator, namely in the context of demand response, leads to the need for improved algorithms and tools. A continuous consumption optimization algorithm has been improved in order to better manage the shifted demand. It has been done in a simulation and user-interaction tool capable of being integrated in a multi-agent smart grid simulator already developed, and also capable of integrating several optimization algorithms to manage real and simulated loads. The case study of this paper enhances the advantages of the proposed algorithm and the benefits of using the developed simulation and user interaction tool.
Resumo:
The integration of the Smart Grid concept into the electric grid brings to the need for an active participation of small and medium players. This active participation can be achieved using decentralized decisions, in which the end consumer can manage loads regarding the Smart Grid needs. The management of loads must handle the users’ preferences, wills and needs. However, the users’ preferences, wills and needs can suffer changes when faced with exceptional events. This paper proposes the integration of exceptional events into the SCADA House Intelligent Management (SHIM) system developed by the authors, to handle machine learning issues in the domestic consumption context. An illustrative application and learning case study is provided in this paper.
Resumo:
Increased penetration of generation and decentralised control are considered to be feasible and effective solution for reducing cost and emissions and hence efficiency associated with power generation and distribution. Distributed generation in combination with the multi-agent technology are perfect candidates for this solution. Pro-active and autonomous nature of multi-agent systems can provide an effective platform for decentralised control whilst improving reliability and flexibility of the grid.
Resumo:
Taking a perspective from a whole building lifecycle, occupier's actions could account for about 50% of energy. However occupants' activities influence building energy performance is still a blind area. Building energy performance is thought to be the result of a combination of building fabrics, building services and occupants' activities, along with their interactions. In this sense, energy consumption in built environment is regarded as a socio-technical system. In order to understand how such a system works, a range of physical, technical and social information is involved that needs to be integrated and aligned. This paper has proposed a semiotic framework to add value for Building Information Modelling, incorporating energy-related occupancy factors in a context of office buildings. Further, building information has been addressed semantically to describe a building space from the facility management perspective. Finally, the framework guides to set up building information representation system, which can help facility managers to manage buildings efficiently by improving their understanding on how office buildings are operated and used.
Resumo:
Distributed generation plays a key role in reducing CO2 emissions and losses in transmission of power. However, due to the nature of renewable resources, distributed generation requires suitable control strategies to assure reliability and optimality for the grid. Multi-agent systems are perfect candidates for providing distributed control of distributed generation stations as well as providing reliability and flexibility for the grid integration. The proposed multi-agent energy management system consists of single-type agents who control one or more gird entities, which are represented as generic sub-agent elements. The agent applies one control algorithm across all elements and uses a cost function to evaluate the suitability of the element as a supplier. The behavior set by the agent's user defines which parameters of an element have greater weight in the cost function, which allows the user to specify the preference on suppliers dynamically. This study shows the ability of the multi-agent energy management system to select suppliers according to the selection behavior given by the user. The optimality of the supplier for the required demand is ensured by the cost function based on the parameters of the element.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)