996 resultados para Emotion detection
Resumo:
This paper presents the first version of EmotiBlog, an annotation scheme for emotions in non-traditional textual genres such as blogs or forums. We collected a corpus composed by blog posts in three languages: English, Spanish and Italian and about three topics of interest. Subsequently, we annotated our collection and carried out the inter-annotator agreement and a ten-fold cross-validation evaluation, obtaining promising results. The main aim of this research is to provide a finer-grained annotation scheme and annotated data that are essential to perform evaluation focused on checking the quality of the created resources.
Resumo:
Most research in the area of emotion detection in written text focused on detecting explicit expressions of emotions in text. In this paper, we present a rule-based pipeline approach for detecting implicit emotions in written text without emotion-bearing words based on the OCC Model. We have evaluated our approach on three different datasets with five emotion categories. Our results show that the proposed approach outperforms the lexicon matching method consistently across all the three datasets by a large margin of 17–30% in F-measure and gives competitive performance compared to a supervised classifier. In particular, when dealing with formal text which follows grammatical rules strictly, our approach gives an average F-measure of 82.7% on “Happy”, “Angry-Disgust” and “Sad”, even outperforming the supervised baseline by nearly 17% in F-measure. Our preliminary results show the feasibility of the approach for the task of implicit emotion detection in written text.
Resumo:
Non-driving related cognitive load and variations of emotional state may impact a driver’s capability to control a vehicle and introduces driving errors. Availability of reliable cognitive load and emotion detection in drivers would benefit the design of active safety systems and other intelligent in-vehicle interfaces. In this study, speech produced by 68 subjects while driving in urban areas is analyzed. A particular focus is on speech production differences in two secondary cognitive tasks, interactions with a co-driver and calls to automated spoken dialog systems (SDS), and two emotional states during the SDS interactions - neutral/negative. A number of speech parameters are found to vary across the cognitive/emotion classes. Suitability of selected cepstral- and production-based features for automatic cognitive task/emotion classification is investigated. A fusion of GMM/SVM classifiers yields an accuracy of 94.3% in cognitive task and 81.3% in emotion classification.
Resumo:
In a clinical setting, pain is reported either through patient self-report or via an observer. Such measures are problematic as they are: 1) subjective, and 2) give no specific timing information. Coding pain as a series of facial action units (AUs) can avoid these issues as it can be used to gain an objective measure of pain on a frame-by-frame basis. Using video data from patients with shoulder injuries, in this paper, we describe an active appearance model (AAM)-based system that can automatically detect the frames in video in which a patient is in pain. This pain data set highlights the many challenges associated with spontaneous emotion detection, particularly that of expression and head movement due to the patient's reaction to pain. In this paper, we show that the AAM can deal with these movements and can achieve significant improvements in both the AU and pain detection performance compared to the current-state-of-the-art approaches which utilize similarity-normalized appearance features only.
Resumo:
La modélisation de l’expérience de l’utilisateur dans les Interactions Homme-Machine est un enjeu important pour la conception et le développement des systèmes adaptatifs intelligents. Dans ce contexte, une attention particulière est portée sur les réactions émotionnelles de l’utilisateur, car elles ont une influence capitale sur ses aptitudes cognitives, comme la perception et la prise de décision. La modélisation des émotions est particulièrement pertinente pour les Systèmes Tutoriels Émotionnellement Intelligents (STEI). Ces systèmes cherchent à identifier les émotions de l’apprenant lors des sessions d’apprentissage, et à optimiser son expérience d’interaction en recourant à diverses stratégies d’interventions. Cette thèse vise à améliorer les méthodes de modélisation des émotions et les stratégies émotionnelles utilisées actuellement par les STEI pour agir sur les émotions de l’apprenant. Plus précisément, notre premier objectif a été de proposer une nouvelle méthode pour détecter l’état émotionnel de l’apprenant, en utilisant différentes sources d’informations qui permettent de mesurer les émotions de façon précise, tout en tenant compte des variables individuelles qui peuvent avoir un impact sur la manifestation des émotions. Pour ce faire, nous avons développé une approche multimodale combinant plusieurs mesures physiologiques (activité cérébrale, réactions galvaniques et rythme cardiaque) avec des variables individuelles, pour détecter une émotion très fréquemment observée lors des sessions d’apprentissage, à savoir l’incertitude. Dans un premier lieu, nous avons identifié les indicateurs physiologiques clés qui sont associés à cet état, ainsi que les caractéristiques individuelles qui contribuent à sa manifestation. Puis, nous avons développé des modèles prédictifs permettant de détecter automatiquement cet état à partir des différentes variables analysées, à travers l’entrainement d’algorithmes d’apprentissage machine. Notre deuxième objectif a été de proposer une approche unifiée pour reconnaître simultanément une combinaison de plusieurs émotions, et évaluer explicitement l’impact de ces émotions sur l’expérience d’interaction de l’apprenant. Pour cela, nous avons développé une plateforme hiérarchique, probabiliste et dynamique permettant de suivre les changements émotionnels de l'apprenant au fil du temps, et d’inférer automatiquement la tendance générale qui caractérise son expérience d’interaction à savoir : l’immersion, le blocage ou le décrochage. L’immersion correspond à une expérience optimale : un état dans lequel l'apprenant est complètement concentré et impliqué dans l’activité d’apprentissage. L’état de blocage correspond à une tendance d’interaction non optimale où l'apprenant a de la difficulté à se concentrer. Finalement, le décrochage correspond à un état extrêmement défavorable où l’apprenant n’est plus du tout impliqué dans l’activité d’apprentissage. La plateforme proposée intègre trois modalités de variables diagnostiques permettant d’évaluer l’expérience de l’apprenant à savoir : des variables physiologiques, des variables comportementales, et des mesures de performance, en combinaison avec des variables prédictives qui représentent le contexte courant de l’interaction et les caractéristiques personnelles de l'apprenant. Une étude a été réalisée pour valider notre approche à travers un protocole expérimental permettant de provoquer délibérément les trois tendances ciblées durant l’interaction des apprenants avec différents environnements d’apprentissage. Enfin, notre troisième objectif a été de proposer de nouvelles stratégies pour influencer positivement l’état émotionnel de l’apprenant, sans interrompre la dynamique de la session d’apprentissage. Nous avons à cette fin introduit le concept de stratégies émotionnelles implicites : une nouvelle approche pour agir subtilement sur les émotions de l’apprenant, dans le but d’améliorer son expérience d’apprentissage. Ces stratégies utilisent la perception subliminale, et plus précisément une technique connue sous le nom d’amorçage affectif. Cette technique permet de solliciter inconsciemment les émotions de l’apprenant, à travers la projection d’amorces comportant certaines connotations affectives. Nous avons mis en œuvre une stratégie émotionnelle implicite utilisant une forme particulière d’amorçage affectif à savoir : le conditionnement évaluatif, qui est destiné à améliorer de façon inconsciente l’estime de soi. Une étude expérimentale a été réalisée afin d’évaluer l’impact de cette stratégie sur les réactions émotionnelles et les performances des apprenants.
Resumo:
Les humains communiquent via différents types de canaux: les mots, la voix, les gestes du corps, des émotions, etc. Pour cette raison, un ordinateur doit percevoir ces divers canaux de communication pour pouvoir interagir intelligemment avec les humains, par exemple en faisant usage de microphones et de webcams. Dans cette thèse, nous nous intéressons à déterminer les émotions humaines à partir d’images ou de vidéo de visages afin d’ensuite utiliser ces informations dans différents domaines d’applications. Ce mémoire débute par une brève introduction à l'apprentissage machine en s’attardant aux modèles et algorithmes que nous avons utilisés tels que les perceptrons multicouches, réseaux de neurones à convolution et autoencodeurs. Elle présente ensuite les résultats de l'application de ces modèles sur plusieurs ensembles de données d'expressions et émotions faciales. Nous nous concentrons sur l'étude des différents types d’autoencodeurs (autoencodeur débruitant, autoencodeur contractant, etc) afin de révéler certaines de leurs limitations, comme la possibilité d'obtenir de la coadaptation entre les filtres ou encore d’obtenir une courbe spectrale trop lisse, et étudions de nouvelles idées pour répondre à ces problèmes. Nous proposons également une nouvelle approche pour surmonter une limite des autoencodeurs traditionnellement entrainés de façon purement non-supervisée, c'est-à-dire sans utiliser aucune connaissance de la tâche que nous voulons finalement résoudre (comme la prévision des étiquettes de classe) en développant un nouveau critère d'apprentissage semi-supervisé qui exploite un faible nombre de données étiquetées en combinaison avec une grande quantité de données non-étiquetées afin d'apprendre une représentation adaptée à la tâche de classification, et d'obtenir une meilleure performance de classification. Finalement, nous décrivons le fonctionnement général de notre système de détection d'émotions et proposons de nouvelles idées pouvant mener à de futurs travaux.
Resumo:
Three experiments examined the cultural relativity of emotion recognition using the visual search task. Caucasian-English and Japanese participants were required to search for an angry or happy discrepant face target against an array of competing distractor faces. Both cultural groups performed the task with displays that consisted of Caucasian and Japanese faces in order to investigate the effects of racial congruence on emotion detection performance. Under high perceptual load conditions, both cultural groups detected the happy face more efficiently than the angry face. When perceptual load was reduced such that target detection could be achieved by feature-matching, the English group continued to show a happiness advantage in search performance that was more strongly pronounced for other race faces. Japanese participants showed search time equivalence for happy and angry targets. Experiment 3 encouraged participants to adopt a perceptual based strategy for target detection by removing the term 'emotion' from the instructions. Whilst this manipulation did not alter the happiness advantage displayed by our English group, it reinstated it for our Japanese group, who showed a detection advantage for happiness only for other race faces. The results demonstrate cultural and linguistic modifiers on the perceptual saliency of the emotional signal and provide new converging evidence from cognitive psychology for the interactionist perspective on emotional expression recognition.
Resumo:
Mobile learning, in the past defined as learning with mobile devices, now refers to any type of learning-on-the-go or learning that takes advantage of mobile technologies. This new definition shifted its focus from the mobility of technology to the mobility of the learner (O'Malley and Stanton 2002; Sharples, Arnedillo-Sanchez et al. 2009). Placing emphasis on the mobile learner’s perspective requires studying “how the mobility of learners augmented by personal and public technology can contribute to the process of gaining new knowledge, skills, and experience” (Sharples, Arnedillo-Sanchez et al. 2009). The demands of an increasingly knowledge based society and the advances in mobile phone technology are combining to spur the growth of mobile learning. Around the world, mobile learning is predicted to be the future of online learning, and is slowly entering the mainstream education. However, for mobile learning to attain its full potential, it is essential to develop more advanced technologies that are tailored to the needs of this new learning environment. A research field that allows putting the development of such technologies onto a solid basis is user experience design, which addresses how to improve usability and therefore user acceptance of a system. Although there is no consensus definition of user experience, simply stated it focuses on how a person feels about using a product, system or service. It is generally agreed that user experience adds subjective attributes and social aspects to a space that has previously concerned itself mainly with ease-of-use. In addition, it can include users’ perceptions of usability and system efficiency. Recent advances in mobile and ubiquitous computing technologies further underline the importance of human-computer interaction and user experience (feelings, motivations, and values) with a system. Today, there are plenty of reports on the limitations of mobile technologies for learning (e.g., small screen size, slow connection), but there is a lack of research on user experience with mobile technologies. This dissertation will fill in this gap by a new approach in building a user experience-based mobile learning environment. The optimized user experience we suggest integrates three priorities, namely a) content, by improving the quality of delivered learning materials, b) the teaching and learning process, by enabling live and synchronous learning, and c) the learners themselves, by enabling a timely detection of their emotional state during mobile learning. In detail, the contributions of this thesis are as follows: • A video codec optimized for screencast videos which achieves an unprecedented compression rate while maintaining a very high video quality, and a novel UI layout for video lectures, which together enable truly mobile access to live lectures. • A new approach in HTTP-based multimedia delivery that exploits the characteristics of live lectures in a mobile context and enables a significantly improved user experience for mobile live lectures. • A non-invasive affective learning model based on multi-modal emotion detection with very high recognition rates, which enables real-time emotion detection and subsequent adaption of the learning environment on mobile devices. The technology resulting from the research presented in this thesis is in daily use at the School of Continuing Education of Shanghai Jiaotong University (SOCE), a blended-learning institution with 35.000 students.
Resumo:
The exponential growth of the subjective information in the framework of the Web 2.0 has led to the need to create Natural Language Processing tools able to analyse and process such data for multiple practical applications. They require training on specifically annotated corpora, whose level of detail must be fine enough to capture the phenomena involved. This paper presents EmotiBlog – a fine-grained annotation scheme for subjectivity. We show the manner in which it is built and demonstrate the benefits it brings to the systems using it for training, through the experiments we carried out on opinion mining and emotion detection. We employ corpora of different textual genres –a set of annotated reported speech extracted from news articles, the set of news titles annotated with polarity and emotion from the SemEval 2007 (Task 14) and ISEAR, a corpus of real-life self-expressed emotion. We also show how the model built from the EmotiBlog annotations can be enhanced with external resources. The results demonstrate that EmotiBlog, through its structure and annotation paradigm, offers high quality training data for systems dealing both with opinion mining, as well as emotion detection.
Resumo:
This paper describes a module for the prediction of emotions in text chats in Spanish, oriented to its use in specific-domain text-to-speech systems. A general overview of the system is given, and the results of some evaluations carried out with two corpora of real chat messages are described. These results seem to indicate that this system offers a performance similar to other systems described in the literature, for a more complex task than other systems (identification of emotions and emotional intensity in the chat domain).
Resumo:
In the past years, an important volume of research in Natural Language Processing has concentrated on the development of automatic systems to deal with affect in text. The different approaches considered dealt mostly with explicit expressions of emotion, at word level. Nevertheless, expressions of emotion are often implicit, inferrable from situations that have an affective meaning. Dealing with this phenomenon requires automatic systems to have “knowledge” on the situation, and the concepts it describes and their interaction, to be able to “judge” it, in the same manner as a person would. This necessity motivated us to develop the EmotiNet knowledge base — a resource for the detection of emotion from text based on commonsense knowledge on concepts, their interaction and their affective consequence. In this article, we briefly present the process undergone to build EmotiNet and subsequently propose methods to extend the knowledge it contains. We further on analyse the performance of implicit affect detection using this resource. We compare the results obtained with EmotiNet to the use of alternative methods for affect detection. Following the evaluations, we conclude that the structure and content of EmotiNet are appropriate to address the automatic treatment of implicitly expressed affect, that the knowledge it contains can be easily extended and that overall, methods employing EmotiNet obtain better results than traditional emotion detection approaches.
Resumo:
This document describes the first bundle of core WP2 (user data analytics) client side components, including their specifications, usecases, and working prototypes. Included assets contain a description of their current status, and links to their full designs and downloadable versions. This deliverable only describes operational SW assets (even though beta) that are tested and documented. It should be noted, however, that various additional software assets (2.2d Cognitive Capacity Measurement and 2.3a Realtime Emotion Detection) are near completion for inclusion in games during the first pilot round. Those assets are still scheduled for inclusion in the final bundle deliverable D2.2.
Resumo:
Software assets are key output of the RAGE project and they can be used by applied game developers to enhance the pedagogical and educational value of their games. These software assets cover a broad spectrum of functionalities – from player analytics including emotion detection to intelligent adaptation and social gamification. In order to facilitate integration and interoperability, all of these assets adhere to a common model, which describes their properties through a set of metadata. In this paper the RAGE asset model and asset metadata model is presented, capturing the detail of assets and their potential usage within three distinct dimensions – technological, gaming and pedagogical. The paper highlights key issues and challenges in constructing the RAGE asset and asset metadata model and details the process and design of a flexible metadata editor that facilitates both adaptation and improvement of the asset metadata model.
Resumo:
The large upfront investments required for game development pose a severe barrier for the wider uptake of serious games in education and training. Also, there is a lack of well-established methods and tools that support game developers at preserving and enhancing the games’ pedagogical effectiveness. The RAGE project, which is a Horizon 2020 funded research project on serious games, addresses these issues by making available reusable software components that aim to support the pedagogical qualities of serious games. In order to easily deploy and integrate these game components in a multitude of game engines, platforms and programming languages, RAGE has developed and validated a hybrid component-based software architecture that preserves component portability and interoperability. While a first set of software components is being developed, this paper presents selected examples to explain the overall system’s concept and its practical benefits. First, the Emotion Detection component uses the learners’ webcams for capturing their emotional states from facial expressions. Second, the Performance Statistics component is an add-on for learning analytics data processing, which allows instructors to track and inspect learners’ progress without bothering about the required statistics computations. Third, a set of language processing components accommodate the analysis of textual inputs of learners, facilitating comprehension assessment and prediction. Fourth, the Shared Data Storage component provides a technical solution for data storage - e.g. for player data or game world data - across multiple software components. The presented components are exemplary for the anticipated RAGE library, which will include up to forty reusable software components for serious gaming, addressing diverse pedagogical dimensions.
Resumo:
Emotion research has long been dominated by the “standard method” of displaying posed or acted static images of facial expressions of emotion. While this method has been useful it is unable to investigate the dynamic nature of emotion expression. Although continuous self-report traces have enabled the measurement of dynamic expressions of emotion, a consensus has not been reached on the correct statistical techniques that permit inferences to be made with such measures. We propose Generalized Additive Models and Generalized Additive Mixed Models as techniques that can account for the dynamic nature of such continuous measures. These models allow us to hold constant shared components of responses that are due to perceived emotion across time, while enabling inference concerning linear differences between groups. The mixed model GAMM approach is preferred as it can account for autocorrelation in time series data and allows emotion decoding participants to be modelled as random effects. To increase confidence in linear differences we assess the methods that address interactions between categorical variables and dynamic changes over time. In addition we provide comments on the use of Generalized Additive Models to assess the effect size of shared perceived emotion and discuss sample sizes. Finally we address additional uses, the inference of feature detection, continuous variable interactions, and measurement of ambiguity.