875 resultados para Embryo selection
Resumo:
OBJECTIVE: To compare the cumulative live birth rates obtained after cryopreservation of either pronucleate (PN) zygotes or early-cleavage (EC) embryos. DESIGN: Prospective randomized study. SETTING: University hospital. PATIENT(S): Three hundred eighty-two patients, involved in an IVF/ICSI program from January 1993 to December 1995, who had their supernumerary embryos cryopreserved either at the PN (group I) or EC (group II) stage. For 89 patients, cryopreservation of EC embryos was canceled because of poor embryo development (group III). Frozen-thawed embryo transfers performed up to December 1998 were considered. MAIN OUTCOME MEASURE(S): Age, oocytes, zygotes, cryopreserved and transferred embryos, damage after thawing, cumulative embryo scores, implantation, and cumulative live birth rates. RESULT(S): The clinical pregnancy and live birth rates were similar in all groups after fresh embryo transfers. Significantly higher implantation (10.5% vs. 5.9%) and pregnancy rates (19.5% vs. 10.9%; P< or = .02 per transfer after cryopreserved embryo transfers were obtained in group I versus group II, leading to higher cumulative pregnancy (55.5% vs. 38.6%; P < or = .002 and live birth rates (46.9% vs. 27.7%; P< or = .0001.Conclusion(s): The transfer of a maximum of three unselected embryos and freezing of all supernumerary PN zygotes can be safely done with significantly higher cumulative pregnancy chances than cryopreserving at a later EC stage.
Resumo:
BACKGROUND: As embryo selection is not allowed by law in Switzerland, we need a single early scoring system to identify zygotes with high implantation potential and to select zygotes for fresh transfer or cryopreservation. The underlying aim is to maximize the cumulated pregnancy rate while limiting the number of multiple pregnancies. METHODS: In all, 613 fresh and 617 frozen-thawed zygotes were scored for proximity, orientation and centring of the pronuclei, cytoplasmic halo, and number and polarization of the nucleolar precursor bodies. From these individual scores, a cumulated pronuclear score (CPNS) was calculated. Correlation between CPNS and implantation was examined and compared between fresh and frozen-thawed zygotes. The effect of freezing on CPNS was also investigated. RESULTS: CPNS was positively associated with embryo implantation in both fresh and frozen zygotes. With similar CPNS, frozen zygotes presented implantation rates as high as those of fresh zygotes. Nucleolar precursor bodies pattern and cytoplasmic halo appeared as the most important factors predictive of implantation for both types of zygotes, while pronuclei position was specifically relevant for frozen-thawed zygotes. Freezing induced an alteration of most zygote parameters, resulting in a significantly lower CPNS and a lower pregnancy rate. CONCLUSIONS: CPNS may be used as a single prognostic tool for implantation of both fresh and frozen-thawed zygotes. Lower CPNS values of frozen-thawed zygotes may also be indicative of freezing damage to zygotes. Successful implantation of frozen zygotes despite lower CPNS suggests that they may recover after thawing and in vitro culture.
Resumo:
Preimplantation genetic diagnosis (PGD) was originally developed to diagnose embryo-related genetic abnormalities for couples who present a high risk of a specific inherited disorder. Because this technology involves embryo selection, the medical, bioethical, and legal implications of the technique have been debated, particularly when it is used to select features that are not related to serious diseases. Although several initiatives have attempted to achieve regulatory harmonization, the diversity of healthcare services available and the presence of cultural differences have hampered attempts to achieve this goal. Thus, in different countries, the provision of PGD and regulatory frameworks reflect the perceptions of scientific groups, legislators, and society regarding this technology. In Brazil, several texts have been analyzed by the National Congress to regulate the use of assisted reproduction technologies. Legislative debates, however, are not conclusive, and limited information has been published on how PGD is specifically regulated. The country requires the development of new regulatory standards to ensure adequate access to this technology and to guarantee its safe practice. This study examined official documents published on PGD regulation in Brazil and demonstrated how little direct oversight of PGD currently exists. It provides relevant information to encourage reflection on a particular regulation model in a Brazilian context, and should serve as part of the basis to enable further reform of the clinical practice of PGD in the country.
Resumo:
Objective: This case-control study analyzed mass spectrometry fingerprinting patterns of culture media samples used for embryo culture to predict embryo implantation. Methods: The culture medium harvested after embryo transfer of 22 embryos from 13 patients was used for the experiments. After embryo transfer, the remaining culture media were collected and samples were split in positive (n=8) and negative (n=14) implantation groups according to implantation outcomes (100% or 0% of implantation). Samples were individually diluted and injected directly to the Electrospray ionization (ESI) MS coupled to a Quadrupole Time-of-flight MS (Q-ToF-MS).Ions relative intensities of each spectrum were considered. Data analysis was conducted in MatLab 7.0 version using Partial Least Squares - Discriminant Analysis toolbox. Results: There were 3027 observed ions at 100% and 0% implantation groups by ESI-Q-ToF-MS. The statistical model could categorize the samples in two clusters, based on their positive and negative implantation outcomes. Less intense ions present in the mass spectra with statistical significance have contributed to the major differences to group distinction. Conclusions: Positive and negative implantation embryos showed a specific biochemical pattern present in culture media, which could be detected as a fast, simple and non-invasive way. This biochemical profile could help the selection of the most viable embryo, improving single embryo transfer and thus eliminating the risk and undesirable outcomes of multiple pregnancies. © Todos os direitos reservados a SBRA - Sociedade Brasileira de Reprodução Assistida.
Resumo:
The recent House of Lords decision in Quintavalle v Human Fertilisation and Embryology Authority has raised difficult and complex issues regarding the extent to which embryo selection and reproductive technology can be used as a means of rectifying genetic disorders and treating critically ill children. This comment outlines the facts of Quintavalle and explores how the House of Lords approached the legal, ethical and policy issues that arose out of the Human Fertilisation and Embryology Authority's (UK) decision to allow reproductive and embryo technology to be used to produce a 'saviour sibling' whose tissue could be used to save the life of a critically ill child. Particular attention will be given to the implications of the decision in Quintavalle for Australian family and medical law and policy. As part of this focus, the comment explores the current Australian legislative and policy framework regarding the use of genetic and reproductive technology as a mechanism through which to assist critically ill siblings. It is argued that the present Australian framework would appear to impose significant limits on the medical uses of genetic technology and, in this context, would seem to reflect many of the principles that were articulated by the House of Lords in Quintavalle.
Resumo:
Selostus: Alkionsiirtojalostusohjelma "ASMO", sen tavoitteet ja yhteenveto alkuvalinnan tuloksista
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this study was to evaluate alternatives in small volumes to conventional gradient of Percoll((R)) on semen quality, in vitro embryo production, sex ratio and embryo survival after vitrification. Thawed semen was randomly allocated to one of four density gradient selection methods: (1) conventional Percoll((R)) (P), (2) MiniPercoll (MP), (3) MiniIsolate (MI), and (4) MiniOptiprep (MO). Sperm kinetics and quality were evaluated. Use of P, MP and MI gradients did not affect sperm motility (P > 0.05). However, there was a decrease in total and progressive sperm motility in MO (70.8 and 51.3% vs. 87.3 and 69.5% for P; 87.3 and 73% for MP; 92.3 and 78.8% for MI; P < 0.05). The MO had lower membrane integrity compared with P, MP and MI (39.7 vs. 70.5, 72.3, 63.8%, respectively, P < 0.05). The percentage of blastocysts produced was higher in MI than in MP and MO (21.1 vs. 16.1 and 16.9%, P < 0.05) and similar to P (18.4%; P > 0.05). Sex ratio and embryo survival after vitrification were similar among groups (P > 0.05). Semen selected by Isolate and Optiprep gradient, at the concentrations and small volumes used, demonstrated similar characteristics and in vitro embryo production to conventional Percoll((R)) gradient.
Resumo:
Résumé : Les mécanismes de sélection sexuelle, en particulier la compétition entre mâles (sélection inter-sexuelle) et le choix des femelles (sélection intra-sexuelle), peuvent fortement influencer le succès reproducteur d'un individu, c'est-à-dire son nombre de descendants. On observe ainsi que les mâles dominants et les mâles élaborant des caractères sexuels secondaires marqués ont un succès reproducteur élevé. Toutefois, le succès reproducteur ne suffit pas pour garantir une contribution génétique élevée, parce que la fitness dépend également de la performance des descendants (c'est-à-dire de leur survie et de leur propre succès reproducteur). Si cette performance dépend en partie des gènes paternels, les males ont un avantage certain à signaler leur qualité aux femelles afin d'atteindre des taux de reproduction élevé. Ce mécanisme de signalisation est connu sous le nom de 'good genes hypothesis', toutefois très peu d'études ont clairement démontré le lien entre la qualité génétique des individus et la signalisation. De plus, la performance des descendants peut aussi dépendre des effets génétiques de compatibilité entre mâles et femelles ('compatible genes'). C'est-à-dire que certains allèles paternels n'apporteraient un avantage aux descendants qu'en combinaison avec certains allèles maternels. Nous avons déterminé, durant la période de reproduction, le statut de dominance des mâles pour deux espèces de poissons d'eau douce : la truite (Salmo trotta) et le vairon (Phoxinus phoxinus), puis nous avons évalué la relation entre le succès reproducteur et le statut de dominance et/ou la quantité de signalisation des caractères sexuels secondaires. Nous avons également fécondés artificiellement des oeufs de truites et de corégones (Coregonus palaea), en croisant chaque mâle avec chaque femelle (full-factorial breeding design). Ce type de design autorise la quantification précise des effets génétiques et permet de séparer les effets de 'good genes' et de 'compatible genes'. Cela a été fait sous différentes intensités de stress bactérien, ainsi que dans des conditions naturelles, et nous avons pu ainsi tester si certains indicateurs de qualité génétique des mâles ('good genes') étaient liés a) à la dominance et/ou b) à l'expression des caractères sexuels secondaires des mâles comme l'intensité mélanique ou la taille des tubercules sexuels. En outre, nous cherchons à savoir si la survie des descendants est liée à certaines combinaison des gènes du complexe d'histocompatibilité majeur (MHC) et/ou à la parenté génétique des parents, les deux traits étant soupçonnés d'avoir des influences génétique de compatibilité (`compatible genes') à la performance des descendants. Nous avons constaté que la dominance des mâles est directement liée à la taille et au poids des mâles (truites, vairons), mais également aux caractères sexuels secondaires (tubercules). De plus, les mâles vairons dominant ont eu un succès de fécondation plus élevés que les mâles subordonnés. Nous montrons que les truites et corégones mâles diffèrent dans leur qualité génétique, qui a été mesurée avéc la survie embryonnaire, le temps avant l'éclosion et enfin la croissance juvénile. Contrairement aux prédictions, la dominance (ou les traits indicatifs de dominance) n'était liée à la qualité génétique, dans aucun des traitements, et ne fonctionne donc pas comme indicateur de qualité. Par contre, la qualité génétique était liée aux caractères sexuels secondaires, particulièrement par la teinte mélanique chez les truites. Les embryons de truites issus de pères sombres survivaient mieux que ceux issus de pères clairs dans des environnements difficiles, de plus leur croissance était plus élevée lors de leur première année dans des conditions naturelles. La taille des juvéniles lors de leur première année est un trait important lié au succès dans la compétition pour des ressources telles qu'abri ou nourriture. De plus, les femelles truites peuvent augmenter la survie de leurs descendants en choisissant des mâles selon leur type de MHC ou selon leur degré de parenté. En outre, chez les corégones, la morphologie des tubercules sexuels ne semble pas signaler la qualité génétique. Nous avons également remarqué que l'exposition à des pathogènes non-létaux pouvait influencer la performance des alevins à court et long terme, probablement en affaiblissant leur système immunitaire. Cette thèse montre que les mâles diffèrent dans leur qualité génétique et que différents mécanismes de sélection inter- ou intra-sexuelle (par exemple la préférence pour des mâles sombres, pour des génotypes MHC ou pour des couples avec degré de parenté basse) pouvait avoir un effet positif sur la qualité des descendants, bien que cet effet génétique pouvait changer au cours du temps et entre différents environnements. Contrairement à nos attentes, le résultat de la compétition intra-sexuelle (la hiérarchie de dominance entre mâles) n'était pas lié à la qualité génétique individuelle ('good genes'). Dans ce sens, ce travail permet également de contribuer à l'explication du fait que la sélection sexuelle, de par sa forte sélection directionnelle, ne conduit pas à la diminution de la variance génétique, mais plutôt à la maintenance du polymorphisme génétique. Summary : Sexual selection mechanisms, especially male-male competition (inteasexual selection) and female mate choice (inteasexual selection), can strongly influence individual mating success, often resulting in dominant males and males with elaborate secondary sexual characters having higher fertilisation success. However, siring a high number of offspring alone does not guarantee high individual fitness, as fitness does also strongly depend on offspring performance (i.e. survival, fecundity). If this superiority in offspring performance depends on paternally inherited genes, the fathers are expected to signal this potential indirect benefit to females in order to attain high mating rates. This mechanism is also known as the 'good genes' hypothesis of sexual selection but until now most studies failed to conclusively show the relation of an individual genetic quality and its potential signalling traits. Further, offspring performance could also depend on compatible gene effects. These are alleles that increase offspring performance only in combination with other specific alleles. We first determined male dominance status from intrasexual competition during mating season for brown trout (Salmo trutta) and European minnows (Phoxinus phoxinus). For minnows we additionally checked if dominance and/or secondary sexual traits were linked to fertilisation success. Further, we artificially fertilised brown trout and alpine whitefish (Coregonus palaea) eggs, following full factorial breeding designs, enabling to properly measure `good gene' and `compatible gene' effects on offspring performance. This was done under different intensities of natural stressors, as well as under natural conditions. This procedure allowed us to test if the obtained male genetic quality measures (good genes effects) were indicated by a) dominance or lay traits linked to dominance and/or by b) secondary sexual characteristics such as melanin-based male skin darkness or breeding tubercles. Further, we investigated if offspring survival was linked to the MHC (major histocompatibility complex) gene combinations and/or to the parental genetic relatedness, as both traits were shown to have 'compatible gene' effects that may influence offspring performance. We found that male dominance in intrasexual competition was positively linked to body size, body weight (brown trout, minnows) but also to elaborate secondary sexual characteristics (breeding tubercles in minnows). Further, dominant minnow males did have an increased fertilisation success compared to subordinate ones. We show that brown trout and whitefish males do usually differ in their genetic quality, which was measured as embryo survival, hatching timing and finally as juvenile growth. Contrary to prediction male dominance or dominance indicating traits do not function as a quality signal as they were not linked to genetic quality. This result was constant when measuring genetic quality under different levels of natural stressors and under natural conditions (brown trout). On the other hand genetic quality seemed to be indicated by secondary sexual characteristics, specifically by melanin-based skin darkness in brown trout as brown trout embryos sired by darker fathers had increased survival rates when raised under harsh conditions and. they grew larger as juveniles after one year of growth in a natural stream, which is an important trait influencing success of juveniles in competition for hidings, food and other resources. Furthermore, brown trout females may increase the survival of their embryos when choosing males according to their MHC genotypes or to the general genetic relatedness between themselves and their potential mates. In whitefish on the other hand breeding tubercle morphology did not seem to signal genetic quality. Eventually, we saw that anon-lethal exposure to pathogens might influence short term and long term offspring performance probably by weakening an exposed individual's immune system. This thesis shows that males usually differ in their genetic quality and that different inter- or intrasexual selection mechanisms (e.g. mate selection favouring dark males, preference for MHC genotype combinations or for unrelated mates) may have strong positive effects on genetically dependent offspring performance but that such genetìc effects can change over time and environments. In contrast to our a priori expectations, the outcome of intrasexual selection, namely male dominance hierarchies, with dominant males often having high fertilisation success, was not linked to individual genetic quality (`good genes'). In this sense the present thesis may also be a helpful contribution to understand why sexual selection does not lead to rapid loss of genetic variation by strong directional selection but could even lead to the maintenance of genetic variation in natural populations.
Resumo:
Signal relay by guidance receptors at the axonal growth cone is a process essential for the assembly of a functional nervous system. We investigated the in vivo function of Src family kinases (SFKs) as growth cone guidance signaling intermediates in the context of spinal lateral motor column (LMC) motor axon projection toward the ventral or dorsal limb mesenchyme. Using in situ mRNA detection we determined that Src and Fyn are expressed in LMC motor neurons of chick and mouse embryos at the time of limb trajectory selection. Inhibition of SFK activity by C-terminal Src kinase (Csk) overexpression in chickLMCaxons using in ovo electroporation resulted inLMC axons selecting the inappropriate dorsoventral trajectory within the limb mesenchyme, with medial LMC axon projecting into the dorsal and ventral limb nerve with apparently random incidence. We also detected LMC axon trajectory choice errors in Src mutant mice demonstrating a nonredundant role for Src in motor axon guidance in agreement with gain and loss of Src function in chickLMCneurons which led to the redirection ofLMCaxons. Finally, Csk-mediated SFK inhibition attenuated the retargeting ofLMCaxons caused by EphA or EphB over-expression, implying the participation of SFKs in Eph-mediated LMC motor axon guidance. In summary, our findings demonstrate that SFKs are essential for motor axon guidance and suggest that they play an important role in relaying ephrin:Eph signals that mediate the selection of motor axon trajectory in the limb.
Resumo:
The objective of this study was to evaluate pregnancy rates of recipients of different breed groups (Nellore and crossbreed), as well as the effects of size and type of the corpus luteum (CL) on plasmatic concentrations of progesterone and pregnancy rates of embryo recipients. A total of 152 heifers were synchronized with progesterone implants and on the day of embryo transfer, previously obtained by superovulation and frozen in ethylene glycol, the diameter and type of the corpus luteum (cavitary and compact) was measured and blood was collected for progesterone measurement. The pregnancy rate was 44.1%, with a diameter of corpus luteum higher in recipients that became pregnant (2.03±0.41) compared with non-pregnant ones (1.86±0.34 cm). Plasmatic concentrations of progesterone did not differ between pregnant (1.50±1.05) and non-pregnant (1.31±0.91 ng/mL) animals. The type of corpus luteum did not influence the pregnancy rates. Only Angus and crossbred Marchigiana differ among themselves in pregnancy rates (33.3 and 59.2%, respectively). The pregnancy probability was affected only by CL diameter, but not by P4 plasmatic concentration. Selection of the corpus luteum size at the time of embryo transfer is an important factor to increase pregnancy rates in recipients, and compact and cavitary corpora lutea do not influence the pregnancy rates of bovine embryo recipients. Nellore recipients have pregnancy rates that are satisfactory and comparable to crossbred (Bos taurus × Bos indicus) recipients.
Resumo:
A simulation model implemented in the programming software Delphi XE® was applied to evaluate sex selection in bovine. The hypothesis under investigation was that a dynamic model with stochastic and deterministic elements could detect the sexed semen technique to minimize pregnancy cost and to determine the adequate number of recipients required for in vivo (ET) and in vitro embryo production (IVP) in the proposed scenarios. Sex selection was compared through semen sexed using flow cytometry (C1) and density gradient centrifugation techniques (C2) in ET and IVP. Sensibility analyses were used to identify the adequate number of recipients for each scenario. This number was reinserted into the model to determine the biological and financial values that maximized ET and IVP using sexed semen (C1M and C2M). New scenarios showed that the density gradient technique minimized pregnancy cost based on the proposed scenarios. In addition, the adequate number of recipients (ET - C1M - 115 and C2M - 105)/(IVP - C1M - 145 and C2M - 140) per donor used was determined to minimize the pregnancy cost in all scenarios.
Resumo:
Although the zebrafish possesses many characteristics that make it a valuable model for genetic studies of vertebrate development, one deficiency of this model system is the absence of methods for cell-mediated gene transfer and targeted gene inactivation. In mice, embryonic stem cell cultures are routinely used for gene transfer and provide the advantage of in vitro selection for rare events such as homologous recombination and targeted mutation. Transgenic animals possessing a mutated copy of the targeted gene are generated when the selected cells contribute to the germ line of a chimeric embryo. Although zebrafish embryo cell cultures that exhibit characteristics of embryonic stem cells have been described, successful contribution of the cells to the germ-cell lineage of a host embryo has not been reported. In this study, we demonstrate that short-term zebrafish embryo cell cultures maintained in the presence of cells from a rainbow trout spleen cell line (RTS34st) are able to produce germ-line chimeras when introduced into a host embryo. Messenger RNA encoding the primordial germ-cell marker, vasa, was present for more than 30 days in embryo cells cocultured with RTS34st cells or their conditioned medium and disappeared by 5 days in the absence of the spleen cells. The RTS34st cells also inhibited melanocyte and neuronal cell differentiation in the embryo cell cultures. These results suggest that the RTS34st splenic–stromal cell line will be a valuable tool in the development of a cell-based gene transfer approach to targeted gene inactivation in zebrafish.