994 resultados para Embryo quality


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To evaluate whether intracytoplasmic morphologically selected sperm injection (IMSI) could influence early paternal effects by observing embryo quality at day 2.Study design: The study included 30 couples with at least one of the following criteria: male factor infertility, at least 2 previous failures of implantation or previous miscarriages after IVF/ICSI. Sibling oocytes of each patient were randomly assigned to either the ICSI group or the IMSI group. For IMSI, spermatozoa were selected at 8400x magnification through an inverted microscope equipped with Nomarski differential interference contrast optics, Uplan Apo 100x oil/1.35 objective lens and variable zoom lens. For conventional ICSI, spermatozoa were selected at 400x magnification. An embryo was defined as top quality if there were four identical blastomeres on day 2 with no fragments or multinucleation of blastomeres. Data were analysed using the Wilcoxon and chi-squared tests. The significance level was set at P < 0.05. The variables were analysed in relation to the general population and the subpopulations with or without male factor.Results: A total of 331 MII oocytes (30 oocyte retrievals) were selected and injected by the ICSI (n: 172) or IMSI (n: 159) procedure. For IMSI, only spermatozoa classified as morphologically normal at high magnification were used. No differences (P > 0.05) in fertilisation rate (ICSI: 70.9%; IMSI: 70.4%), early embryo cleavage rate (ICSI: 66.9%; IMSI: 60.4%) or cleavage rate (ICSI: 99.2%; IMSI: 99.1%) were observed. on day 2, as compared to ICSI, IMSI provided a similar proportion of top quality embryos (ICSI: 57.8%; IMSI: 52.2%; P > 0.05). These results were not influenced by the presence or absence of male factor.Conclusion: In terms of embryo quality at day 2, IMSI had the same performance as conventional ICSI. However, we cannot exclude the possibility that IMSI effects occur only as a positive later paternal effect. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data on fertilisation and embryo quality in dairy cattle are presented and the main factors responsible for the low fertility of single-ovulating lactating cows and embryo yield in superovulated dairy cattle are highlighted. During the past 50 years, the fertility in high-producing lactating dairy cattle has decreased as milk production increased. Recent data show conception rates to first service to be approximately 32% in lactating cows, whereas in heifers it has remained above 50%. Fertilisation does not seem to be the principal factor responsible for the low fertility in single-ovulating cows, because it has remained above 80%. Conversely, early embryonic development is impaired in high-producing dairy cows, as observed by most embryonic losses occurring during the first week after fertilisation. However, in superovulated dairy cattle, although fertilisation failure is more pronounced, averaging approximately 45%, the percentage of fertilised embryos viable at 1 week is quite high (>70%). Among the multifactorial causes of low fertility in lactating dairy cows, high feed intake associated with low concentrations of circulating steroids may contribute substantially to reduced embryo quality. Fertilisation failure in superovulated cattle may be a consequence of inappropriate gamete transport due to hormonal imbalances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rabbit does in modern rabbitries are under intensive reproductive rhythms. Females are high milk producers with high energetic expenses due to the extensive overlap between lactation and gestation. This situation leads to a negative energy balance with a mobilization of body fat especially in primiparous rabbit does. Poor body condition and poor health status severely affect the reproductive features (fertility rate and lifespan of the doe as well as ovarian physiology). This paper reviews some reproductive and nutritional approaches used in the last years to improve the reproductive performance of rabbit females, mainly focusing on the influence on ovarian response and embryo quality and with emphasis on epigenetic modifications in pre-implantation embryos and offspring consequences.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective was to evaluate the effects of giving prostaglandin F(2 alpha) (PGF) to donor mares 48 h prior to embryo collection. Non-lactating donor mares (n = 20 estrous cycles in 10 mares), ranging from 2.5 to 10 y of age and 400 to 500 kg of body weight were used from September 2004 to February 2005 in the southern hemisphere (Brazil). Donor mares were randomly assigned in a cross-over design study. During a Treated cycle, 7.5 mg PGF was given 48 h prior to embryo collection, whereas in the Control cycle, 7.5 mg PGF was given at embryo collection. In Treated Cycles, serum progesterone concentrations decreased between the day of PGF treatment and the day of embryo collection (13.9 +/- 5.4 and 0.5 +/- 0.3 ng/mL, respectively; P < 0.05). In Treated versus Control cycles, the interovulatory interval was shorter (14.9 +/- 0.9 vs 17.5 +/- 1.1 d, P < 0.05). However, there was no significant difference between these groups for the interval from PGF to ovulation (average, 9.8 d), embryo recovery rate (average, 75%), embryo quality, uterine protein concentration, and pregnancy rate in recipient mares (average, 87% at 15 d after ovulation, with no pregnancy loss detected by 60 d). In conclusion, giving donor mares PGF 48 h prior to embryo collection reduced the average interovulatory interval by approximately 2.5 d, thereby potentially increasing the numbers of embryos that could be collected during a breeding season, with no deleterious effects on embryo recovery rate, embryo quality, or pregnancy rate in recipient mares. (c) 2011 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Multiple ovulation (superovulation) and embryo transfer has been used extensively in cattle. In the past decade, superstimulatory treatment protocols that synchronise follicle growth and ovulation, allowing for improved donor management and fixed-time AI (FTAI), have been developed for zebu (Bos indicus) and European (Bos taurus) breeds of cattle. There is evidence that additional stimulus with LH (through the administration of exogenous LH or equine chorionic gonadotrophin (eCG)) on the last day of the superstimulatory treatment protocol, called the 'P-36 protocol' for FTAI, can increase embryo yield compared with conventional protocols that are based on the detection of oestrus. However, inconsistent results with the use of hormones that stimulate LH receptors (LHR) have prompted further studies on the roles of LH and its receptors in ovulatory capacity (acquisition of LHR in granulosa cells), oocyte competence and embryo quality in superstimulated cattle. Recent experiments have shown that superstimulation with FSH increases mRNA expression of LHR and angiotensin AT(2) receptors in granulosa cells of follicles >8 mm in diameter. In addition, FSH decreases mRNA expression of growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) in oocytes, but increases the expression of both in cumulus cells, without diminishing the capacity of cumulus-oocyte complexes to generate blastocysts. Although these results indicate that superstimulation with FSH is not detrimental to oocyte competence, supplementary studies are warranted to investigate the effects of superstimulation on embryo quality and viability. In addition, experiments comparing the cellular and/or molecular effects of adding eCG to the P-36 treatment protocol are being conducted to elucidate the effects of superstimulatory protocols on the yield of viable embryos.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Over the last several decades, a number of therapies have been developed that manipulate ovarian follicle growth to improve oocyte quality and conception rates in cattle. Various strategies have been proposed to improve the responses to reproductive biotechnologies following timed artificial insemination (TAI), superovulation (SOV) or ovum pickup (OPU) programmes. During TAI protocols, final follicular growth and size of the ovulatory follicle are key factors that may significantly influence oocyte quality, ovulation, the uterine environment and consequently pregnancy outcomes. Progesterone concentrations during SOV protocols influence follicular growth, oocyte quality and embryo quality; therefore, several adjustments to SOV protocols have been proposed depending on the animal category and breed. In addition, the success of in vitro embryo production is directly related to the number and quality of cumulus oocyte complexes harvested by OPU. Control of follicle development has a significant impact on the OPU outcome. This article discusses a number of key points related to the manipulation of ovarian follicular growth to maximize oocyte quality and improve conception rates following TAI and embryo transfer of in vivo-and in vitro-derived embryos in cattle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Starvation during early development can have lasting effects that influence organismal fitness and disease risk. We characterized the long-term phenotypic consequences of starvation during early larval development in Caenorhabditis elegans to determine potential fitness effects and develop it as a model for mechanistic studies. We varied the amount of time that larvae were developmentally arrested by starvation after hatching ("L1 arrest"). Worms recovering from extended starvation grew slowly, taking longer to become reproductive, and were smaller as adults. Fecundity was also reduced, with the smallest individuals most severely affected. Feeding behavior was impaired, possibly contributing to deficits in growth and reproduction. Previously starved larvae were more sensitive to subsequent starvation, suggesting decreased fitness even in poor conditions. We discovered that smaller larvae are more resistant to heat, but this correlation does not require passage through L1 arrest. The progeny of starved animals were also adversely affected: Embryo quality was diminished, incidence of males was increased, progeny were smaller, and their brood size was reduced. However, the progeny and grandprogeny of starved larvae were more resistant to starvation. In addition, the progeny, grandprogeny, and great-grandprogeny were more resistant to heat, suggesting epigenetic inheritance of acquired resistance to starvation and heat. Notably, such resistance was inherited exclusively from individuals most severely affected by starvation in the first generation, suggesting an evolutionary bet-hedging strategy. In summary, our results demonstrate that starvation affects a variety of life-history traits in the exposed animals and their descendants, some presumably reflecting fitness costs but others potentially adaptive.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: To evaluate sperm DNA fragmentation and semen parameters to diagnose male factor infertility and predict pregnancy after IVF.
Design: Prospective study.
Setting: Academic research laboratory.
Patient(s): Seventy-five couples undergoing IVF and 28 fertile donors.
Intervention(s): Sperm DNA fragmentation was measured by the alkaline Comet assay in semen and sperm after density gradient centrifugation (DGC). Binary logistic regression was used to analyze odds ratios (OR) and relative risks (RR) for IVF outcomes.
Main Outcome Measure(s): Semen parameters and sperm DNA fragmentation in semen and DGC sperm compared with fertilization rates, embryo quality, and pregnancy.
Result(s): Men with sperm DNA fragmentation at more than a diagnostic threshold of 25% had a high risk of infertility (OR: 117.33, 95% confidence interval [CI]: 12.72–2,731.84, RR: 8.75). Fertilization rates and embryo quality decreased as sperm DNA fragmentation increased in semen and DGC sperm. The risk of failure to achieve a pregnancy increased when sperm DNA fragmentation exceeded a prognostic threshold value of 52% for semen (OR: 76.00, CI: 8.69–1,714.44, RR: 4.75) and 42% for DGC sperm (OR: 24.18, CI: 2.89–522.34, RR: 2.16).
Conclusion(s): Sperm DNA testing by the alkaline Comet assay is useful for both diagnosis of male factor infertility and prediction of IVF outcome.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The exchange of histones with protamines in sperm DNA results in sperm chromatin compaction and protection. Variations in sperm protamine expression are associated with male infertility. The aim of this study was to investigate relationships between DNA fragmentation, sperm protamines and assisted reproduction treatment. Semen and spermatozoa prepared by density-gradient centrifugation (DGC) from 73 men undergoing IVF and 24 men undergoing intracytoplasmic sperm injection (ICSI) were included in the study. Nuclear DNA fragmentation was assessed using the alkaline Comet assay and protamines were separated by acid-urea polyacrylamide gels. Sperm DNA fragmentation and protamine content (P1-DNA, P2-DNA, P1 + P2-DNA) decreased in spermatozoa after DGC. Abnormally high and low P1/P2 ratios were associated with increased sperm DNA fragmentation. Couples with idiopathic infertility had abnormally high P1/P2 ratios. Fertilization rates and embryo quality decreased as sperm DNA fragmentation or protamines increased. Sperm DNA fragmentation was lower in couples achieving pregnancies after IVF, but not after ICSI. There was no correlation between protamine content (P1-DNA, P2-DNA, P1 + P2-DNA) or P1/P2 ratios and IVF or ICSI pregnancies. Increased sperm DNA fragmentation was associated with abnormal protamination and resulted in lower fertilization rates, poorer embryo quality and reduced pregnancy rates. During late spermatogenesis, around 85% of the histones in the sperm nucleus are replaced with protamines. This process results in sperm chromatin compaction and also transcription silencing. In the human, protamines are comprised of two types: protamine-1 (P1) and protamine-2 (P2). Variations in sperm protamine expression are associated with male infertility. Similarly, sperm DNA integrity is important for male fertility. The aim of this study was to investigate relationships between DNA fragmentation, sperm protamines and assisted reproduction treatment. Semen and spermatozoa prepared by density-gradient centrifugation (DGC) from 73 men undergoing IVF and 24 men undergoing intracytoplasmic sperm injection (ICSI) were included in the study. Nuclear DNA fragmentation was assessed using the alkaline Comet assay and protamines were separated by acid-urea polyacrylamide gels. Sperm DNA fragmentation and protamine content decreased in spermatozoa after DGC. Abnormally high and low P1/P2 ratios were associated with increased sperm DNA fragmentation. Couples with idiopathic infertility had abnormally high P1/P2 ratios. Fertilization rates and embryo quality decreased as sperm DNA fragmentation or protamines increased. Sperm DNA fragmentation was lower in couples achieving pregnancies after IVF, but not after ICSI. There was no correlation between protamine content or P1/P2 ratios and IVF or ICSI pregnancies. Increased sperm DNA fragmentation was associated with abnormal protamination and resulted in lower fertilization rates, poorer embryo quality and reduced pregnancy rates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract Sperm DNA damage is a useful biomarker for male infertility diagnosis and prediction of assisted reproduction outcomes.
It is associated with reduced fertilization rates, embryo quality and pregnancy rates, and higher rates of spontaneous miscarriage
and childhood diseases. This review provides a synopsis of the most recent studies from each of the authors, all of whom have major
track records in the field of sperm DNA damage in the clinical setting. It explores current laboratory tests and the accumulating body
of knowledge concerning the relationship between sperm DNA damage and clinical outcomes. The paper proceeds to discuss the
strengths, weaknesses and clinical applicability of current sperm DNA tests. Next, the biological significance of DNA damage in
the male germ line is considered. Finally, as sperm DNA damage is often the result of oxidative stress in the male reproductive tract,
the potential contribution of antioxidant therapy in the clinical management of this condition is discussed. DNA damage in human spermatozoa is an important attribute of semen quality. It should be part of the clinical work up and properly controlled trials
addressing the effectiveness of antioxidant therapy should be undertaken as a matter of urgency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As a number of children born by assisted reproductive technology (ART) are increasing each year across the developed world, the health of such offspring is a matter of public concern. Does the integrity of the paternal genome impact on offspring health? In societal terms, as birth rates fall, and the Western population become unsustainable, do the benefits outweigh the costs of creating and providing for this ART conceived sub population? There are little data to date to answer these questions. The long‑term health of such children has largely been ignored, and success measured only by early (pre-birth) outcomes such as embryo quality or pregnancy. However, there are powerful paradigms such as ageing and smoking that give vital clues as to the potential impact of unhealthy spermatozoa on disease risk, mental and physical health, fertility and mortality of these offspring.