930 resultados para Electrophysiological assay
Resumo:
Une fois ingérées par un insecte sensible, les toxines insecticides du bacille de Thuringe doivent être activées par les protéases intestinales de cet insecte. Leur premier domaine, un ensemble de sept hélices-α amphipathiques, est responsable de leur insertion dans la membrane luminale de certaines cellules de l’intestin médian, ce qui crée des pores peu sélectifs. La toxicité et la capacité à former des pores d’une telle toxine, la Cry9Ca, de ses mutants simples R164A et R164K et d’un fragment de 55 kDa résultant d’un clivage protéolytique au niveau de son résidu 164 ont été étudiées à l’aide d’une combinaison de modélisation par homologie, de bioessais, d’expériences de gonflement osmotique avec des vésicules de membrane en bordure en brosse de larves de sphinx du tabac et de mesures électrophysiologiques sur des intestins isolés. Ni les mutations simples ni le clivage protéolytique n’ont altéré la toxicité de la Cry9Ca. Dans une solution à faible force ionique, toutefois, la formation des pores dépend fortement du pH : une augmentation de celui-ci de 6,5 à 10,5 a entraîné une baisse irrégulière et par étapes successives de la perméabilité membranaire. Les quatre préparations de toxine ont néanmoins dépolarisé la membrane apicale d’intestins médians fraîchement isolés baignant dans une solution contenant 122 mM de KCl à pH 10,5. L’activité de la Cry9Ca, et des mutants R164A et R164K, a été grandement stimulée lorsque les expériences ont été effectuées en présence de suc intestinal, de lipides extraits d’un volume équivalent de suc intestinal ou d’un cocktail d’inhibiteurs de protéases solubles dans l’eau. De plus, le rôle des boucles inter-hélicales du Domaine I lors de l’insertion dans la membrane a été étudié avec des mutants doubles de la Cry9Ca dont les mutations introduisaient, neutralisaient ou renversaient une charge électrique. À l’exception de trois d’entres eux, tous ces mutants ont conservé une toxicité et une capacité à former des pores comparables à celles de la toxine parentale. L’ensemble de ces résultats suggère que le micro-environnement de l’intestin médian contribue à minimiser l’influence des charges de surface portées par les résidus des boucles inter-hélicales du Domaine I sur la capacité des toxines du bacille de Thuringe à former des pores. Il indique aussi que, d’une part, selon le site de clivage et les conditions expérimentales utilisées, des protéolyses supplémentaires de la toxine Cry9Ca activée peuvent soit stimuler, soit nuire à son activité et que, d’autre part, le suc intestinal du sphinx du tabac contient probablement un inhibiteur de protéases qui pourrait jouer un rôle important dans l’activité des toxines du bacille de Thuringe.
Resumo:
Mutational and biophysical analysis suggests that an intracellular COOH-terminal domain of the large conductance Ca2+-activated K+ channel (BK channel) contains Ca2+-binding site(s) that are allosterically coupled to channel opening. However the structural basis of Ca2+ binding to BK channels is unknown. To pursue this question, we overexpressed the COOH-terminal 280 residues of the Drosophila slowpoke BK channel (Dslo-C280) as a FLAG- and His6-tagged protein in Escherichia coli. We purified Dslo-C280 in soluble form and used a 45Ca2+-overlay protein blot assay to detect Ca2+ binding. Dslo-C280 exhibits specific binding of 45Ca2+ in comparison with various control proteins and known EF-hand Ca2+-binding proteins. A mutation (D5N5) of Dslo-C280, in which five consecutive Asp residues of the “Ca-bowl” motif are changed to Asn, reduces 45Ca2+-binding activity by 56%. By electrophysiological assay, the corresponding D5N5 mutant of the Drosophila BK channel expressed in HEK293 cells exhibits lower Ca2+ sensitivity for activation and a shift of ≈+80 mV in the midpoint voltage for activation. This effect is associated with a decrease in the Hill coefficient (N) for activation by Ca2+ and a reduction in apparent Ca2+ affinity, suggesting the loss of one Ca2+-binding site per monomer. These results demonstrate a functional correlation between Ca2+ binding to a specific region of the BK protein and Ca2+-dependent activation, thus providing a biochemical approach to study this process.
Resumo:
Nerve injury is known to produce a variety of electrophysiological and morphological neuronal alterations (reviewed by Titmus and Faber, 1990; Bulloch and Ridgeway, 1989; Walters, 1994). Determining if these alterations are adaptive and how they are activated and maintained could provide important insight into basic cellular mechanisms of injury-induced plasticity. Furthermore, characterization of injury-induced plasticity provides a useful assay system for the identification of possible induction signals underlying these neuronal changes. Understanding fundamental mechanisms and underlying induction signals of injury-induced neuronal plasticity could facilitate development of treatment strategies for neural injury and neuropathic pain in humans.^ This dissertation characterizes long-lasting, injury-induced neuronal alterations using the nervous system of Aplysia californica as a model. These changes are examined at the behavioral, electrophysiological, and morphological levels. Injury-induced changes in the electrophysiological properties of neurons were found that increased the signaling effectiveness of the injured neurons. This increase in signalling effectiveness could act to compensate for partial destruction of the injured neuron's peripheral processes. Recovery of a defensive behavioral response which serves to protect the animal from further injury was found within 2 weeks of injury. For the behavioral recovery to occur, new neural pathways must have been formed between the denervated area and the CNS. This was found to be mediated at least in part by new axonal growth which extended from the injured cell back along the original pathway (i.e. into the injured nerve). In addition, injury produced central axonal sprouting into different nerves that do not usually contain the injured neuron's axons. This could be important for (i) finding alternative pathways to the periphery when the original pathways are impassable and (ii) the formation of additional synaptic connections with post-synaptic targets which would further enhance the signalling effectiveness of the injured cell. ^
Resumo:
The role that heparanase plays during metastasis and angiogenesis in tumors makes it an attractive target for cancer therapeutics. Despite this enzyme’s significance, most of the assays developed to measure its activity are complex. Moreover, they usually rely on labeling variable preparations of the natural substrate heparan sulfate, making comparisons across studies precarious. To overcome these problems, we have developed a convenient assay based on the cleavage of the synthetic heparin oligosaccharide fondaparinux. The assay measures the appearance of the disaccharide product of heparanase-catalyzed fondaparinux cleavage colorimetrically using the tetrazolium salt WST-1. Because this assay has a homogeneous substrate with a single point of cleavage, the kinetics of the enzyme can be reliably characterized, giving a Km of 46 μM and a kcat of 3.5 s−1 with fondaparinux as substrate. The inhibition of heparanase by the published inhibitor, PI-88, was also studied, and a Ki of 7.9 nM was determined. The simplicity and robustness of this method, should, not only greatly assist routine assay of heparanase activity but also could be adapted for high-throughput screening of compound libraries, with the data generated being directly comparable across studies.
Resumo:
A surface plasmon resonance-based solution affinity assay is described for measuring the Kd of binding of heparin/heparan sulfate-binding proteins with a variety of ligands. The assay involves the passage of a pre-equilibrated solution of protein and ligand over a sensor chip onto which heparin has been immobilised. Heparin sensor chips prepared by four different methods, including biotin–streptavidin affinity capture and direct covalent attachment to the chip surface, were successfully used in the assay and gave similar Kd values. The assay is applicable to a wide variety of heparin/HS-binding proteins of diverse structure and function (e.g., FGF-1, FGF-2, VEGF, IL-8, MCP-2, ATIII, PF4) and to ligands of varying molecular weight and degree of sulfation (e.g., heparin, PI-88, sucrose octasulfate, naphthalene trisulfonate) and is thus well suited for the rapid screening of ligands in drug discovery applications.
Resumo:
Aims: Influenza is commonly spread by infectious aerosols; however, detection of viruses in aerosols is not sensitive enough to confirm the characteristics of virus aerosols. The aim of this study was to develop an assay for respiratory viruses sufficiently sensitive to be used in epidemiological studies. Method: A two-step, nested real-time PCR assay was developed for MS2 bacteriophage, and for influenza A and B, parainfluenza 1 and human respiratory syncytial virus. Outer primer pairs were designed to nest each existing real-time PCR assay. The sensitivities of the nested real-time PCR assays were compared to those of existing real-time PCR assays. Both assays were applied in an aerosol study to compare their detection limits in air samples. Conclusions: The nested real-time PCR assays were found to be several logs more sensitive than the real-time PCR assays, with lower levels of virus detected at lower Ct values. The nested real-time PCR assay successfully detected MS2 in air samples, whereas the real-time assay did not. Significance and Impact of the Study: The sensitive assays for respiratory viruses will permit further research using air samples from naturally generated virus aerosols. This will inform current knowledge regarding the risks associated with the spread of viruses through aerosol transmission.
Resumo:
A wide range of screening strategies have been employed to isolate antibodies and other proteins with specific attributes, including binding affinity, specificity, stability and improved expression. However, there remains no high-throughput system to screen for target-binding proteins in a mammalian, intracellular environment. Such a system would allow binding reagents to be isolated against intracellular clinical targets such as cell signalling proteins associated with tumour formation (p53, ras, cyclin E), proteins associated with neurodegenerative disorders (huntingtin, betaamyloid precursor protein), and various proteins crucial to viral replication (e.g. HIV-1 proteins such as Tat, Rev and Vif-1), which are difficult to screen by phage, ribosome or cell-surface display. This study used the β-lactamase protein complementation assay (PCA) as the display and selection component of a system for screening a protein library in the cytoplasm of HEK 293T cells. The colicin E7 (ColE7) and Immunity protein 7 (Imm7) *Escherichia coli* proteins were used as model interaction partners for developing the system. These proteins drove effective β-lactamase complementation, resulting in a signal-to-noise ratio (9:1 – 13:1) comparable to that of other β-lactamase PCAs described in the literature. The model Imm7-ColE7 interaction was then used to validate protocols for library screening. Single positive cells that harboured the Imm7 and ColE7 binding partners were identified and isolated using flow cytometric cell sorting in combination with the fluorescent β-lactamase substrate, CCF2/AM. A single-cell PCR was then used to amplify the Imm7 coding sequence directly from each sorted cell. With the screening system validated, it was then used to screen a protein library based the Imm7 scaffold against a proof-of-principle target. The wild-type Imm7 sequence, as well as mutants with wild-type residues in the ColE7- binding loop were enriched from the library after a single round of selection, which is consistent with other eukaryotic screening systems such as yeast and mammalian cell-surface display. In summary, this thesis describes a new technology for screening protein libraries in a mammalian, intracellular environment. This system has the potential to complement existing screening technologies by allowing access to intracellular proteins and expanding the range of targets available to the pharmaceutical industry.
Resumo:
Studies have examined the associations between cancers and circulating 25-hydroxyvitamin D [25(OH)D], but little is known about the impact of different laboratory practices on 25(OH)D concentrations. We examined the potential impact of delayed blood centrifuging, choice of collection tube, and type of assay on 25(OH)D concentrations. Blood samples from 20 healthy volunteers underwent alternative laboratory procedures: four centrifuging times (2, 24, 72, and 96 h after blood draw); three types of collection tubes (red top serum tube, two different plasma anticoagulant tubes containing heparin or EDTA); and two types of assays (DiaSorin radioimmunoassay [RIA] and chemiluminescence immunoassay [CLIA/LIAISON®]). Log-transformed 25(OH)D concentrations were analyzed using the generalized estimating equations (GEE) linear regression models. We found no difference in 25(OH)D concentrations by centrifuging times or type of assay. There was some indication of a difference in 25(OH)D concentrations by tube type in CLIA/LIAISON®-assayed samples, with concentrations in heparinized plasma (geometric mean, 16.1 ng ml−1) higher than those in serum (geometric mean, 15.3 ng ml−1) (p = 0.01), but the difference was significant only after substantial centrifuging delays (96 h). Our study suggests no necessity for requiring immediate processing of blood samples after collection or for the choice of a tube type or assay.
Resumo:
This paper aimed to assess the magnitude of sewage pollution in an urban lake in Dhaka, Bangladesh by using Quantitative PCR (qPCR) of sewage-associated Bacteroides HF183 markers. PCR was also used for the quantitative detection of ruminant wastewater-associated CF128 markers along with the enumeration of traditional fecal indicator bacteria, namely, enterococci. The number of enterococci in lake water samples ranged from 1.1 x 104 to 1.9 x 105 CFU/100 ml of water. From the 20 water samples tested, 14 (70%) and 7 (35%) were PCR positive for the HF183 and CF128 markers, respectively. The numbers of the HF183 and CF128 markers in lake water samples were 3.9 x 104 to 6.3 × 107 and 9.3 x 103 to 6.3 x 105 genomic units (GU)/100 ml of water, respectively. The high numbers of enterococci and the HF183 markers indicate sewage pollution and potential health risks to those who use the lake water for non-potable purposes such as bathing and washing clothes. This is the first study that investigated the presence of microbial source tracking (MST) markers in Dhaka, Bangladesh where diarrhoeal diseases is one of the major causes of childhood mortality. The molecular assay as used in this study can provide valuable information on the extent of sewage pollution, thus facilitating the development of robust strategies to minimise potential health risks.
Resumo:
Reviewing the available literature, one could conclude that marrow-derived mesenchymal stem cells (BMSCs) are the ‘gold standard’ source for bone tissue engineering applications, due to their multilineage differentiation potential and easy accessibility. However, comprehensive studies comparing their osteogenic potential with bone-derived osteoblasts (OBs) to justify the preferred application of BMSCs based on performance are few. To address these shortfalls, in the present study, ovine BMSCs and OBs seeded onto scaffolds were characterized in vitro and transplanted subcutaneously into NOD/SCID mice in combination with and without recombinant human bone morphogenetic protein 7 (rhBMP-7). It was hypothesized that cell origin, ossification type and degree of vascularization and ossification depends on the nature and commitment of transplanted cells and stimulating growth factors, such as rhBMP-7. After retrieval, specimens were analysed by biomechanical testing, µCT analysis, scanning electron microscopy/energy-dispersive X-ray spectroscopy and histo- and immunohistochemistry for osteocalcin, type II collagen and BrdU. The results showed a high degree of cell survival and proliferation ectopically, resulting in active contribution to endochondral osteogenesis. When compared to BMSCs, OBs showed a higher degree of bone deposition while OB-derived bone was of higher maturation. Stimulation with rhBMP-7 increased the rate of bone synthesis for both BMSCs and OBs, additionally promoting neovascularization and osteoclast activity. These results suggest that the origin and commitment of transplanted cells highly influence the type and degree of ossification, that rhBMP-7 represents a powerful adjuvant for bone tissue-engineering applications, and that mature bone is an adequate alternative cell source for bone tissue-engineering applications.
Resumo:
Background: Catheter ablation for atrial fibrillation (AF) is more efficacious than antiarrhythmic therapy. Post ablation recurrences reduce ablation effectiveness and are contributed by lesion discontinuity in the fibrotic linear ablation lesions. The anti-fibrotic role of statins in reducing AF is being assessed in current trials. By reducing the chronic pathological fibrosis that occurs in AF they may reduce AF. However if statins also have an effect on the acute therapeutic fibrosis of an ablation, this could exacerbate lesion discontinuity and AF recurrence. We tested the hypothesis that statins attenuate ablation lesion continuity in a recognised pig atrial linear ablation model. Aims: To assess whether Atorvastatin diminishes the bi-directional conduction block produced by a linear atrial ablation lesion. Methods: Sixteen pigs were randomised to statin (n=8) or placebo (n=8) with drug pre-treatment for 3 days and a further 4 weeks. At initial electrophysiological study (EPS1) 3D right atrium (RA) mapping and a vertical ablation linear lesion in the posterior RA with bidirectional conduction block were completed (Gepstein Circ 1999). Follow-up electrophysiological assessment (EPS2) at 28 days assessed bidirectional conduction block maintenance. Results: Data of 15/16 (statin=7) pigs were analysed. Mean lesion length was 3.7 ± 0.8cm with a mean of 17.9 ± 5.7 lesion applications. Bi-directional conduction block was confirmed in 15/15 pigs (100%) at EPS1 and EPS2. Conclusions: Atorvastatin did not affect ablation lesion continuity in this pig atrial linear ablation model. If patients are on long-term statins for AF reduction, periablation cessation is probably not necessary.
Resumo:
A multiple reaction monitoring mass spectrometric assay for the quantification of PYY in human plasma has been developed. A two stage sample preparation protocol was employed in which plasma containing the full length neuropeptide was first digested using trypsin, followed by solid-phase extraction to extract the digested peptide from the complex plasma matrix. The peptide extracts were analysed by LC-MS using multiple reaction monitoring to detect and quantify PYY. The method has been validated for plasma samples, yielding linear responses over the range 5–1,000 ng mL−1. The method is rapid, robust and specific for plasma PYY detection.