992 resultados para Electromagnetic wave absorption


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the scattering of a planar monochromatic electromagnetic wave incident upon a Schwarzschild black hole. We obtain accurate numerical results from the partial wave method for the electromagnetic scattering cross section and show that they are in excellent agreement with analytical approximations. The scattering of electromagnetic waves is compared with the scattering of scalar, spinor, and gravitational waves. We present a unified picture of the scattering of all massless fields for the first time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prediction of radiated fields from transmission lines has not previously been studied from a panoptical power system perspective. The application of BPL technologies to overhead transmission lines would benefit greatly from an ability to simulate real power system environments, not limited to the transmission lines themselves. Presently circuitbased transmission line models used by EMTP-type programs utilize Carson’s formula for a waveguide parallel to an interface. This formula is not valid for calculations at high frequencies, considering effects of earth return currents. This thesis explains the challenges of developing such improved models, explores an approach to combining circuit-based and electromagnetics modeling to predict radiated fields from transmission lines, exposes inadequacies of simulation tools, and suggests methods of extending the validity of transmission line models into very high frequency ranges. Electromagnetics programs are commonly used to study radiated fields from transmission lines. However, an approach is proposed here which is also able to incorporate the components of a power system through the combined use of EMTP-type models. Carson’s formulas address the series impedance of electrical conductors above and parallel to the earth. These equations have been analyzed to show their inherent assumptions and what the implications are. Additionally, the lack of validity into higher frequencies has been demonstrated, showing the need to replace Carson’s formulas for these types of studies. This body of work leads to several conclusions about the relatively new study of BPL. Foremost, there is a gap in modeling capabilities which has been bridged through integration of circuit-based and electromagnetics modeling, allowing more realistic prediction of BPL performance and radiated fields. The proposed approach is limited in its scope of validity due to the formulas used by EMTP-type software. To extend the range of validity, a new set of equations must be identified and implemented in the approach. Several potential methods of implementation have been explored. Though an appropriate set of equations has not yet been identified, further research in this area will benefit from a clear depiction of the next important steps and how they can be accomplished. Prediction of radiated fields from transmission lines has not previously been studied from a panoptical power system perspective. The application of BPL technologies to overhead transmission lines would benefit greatly from an ability to simulate real power system environments, not limited to the transmission lines themselves. Presently circuitbased transmission line models used by EMTP-type programs utilize Carson’s formula for a waveguide parallel to an interface. This formula is not valid for calculations at high frequencies, considering effects of earth return currents. This thesis explains the challenges of developing such improved models, explores an approach to combining circuit-based and electromagnetics modeling to predict radiated fields from transmission lines, exposes inadequacies of simulation tools, and suggests methods of extending the validity of transmission line models into very high frequency ranges. Electromagnetics programs are commonly used to study radiated fields from transmission lines. However, an approach is proposed here which is also able to incorporate the components of a power system through the combined use of EMTP-type models. Carson’s formulas address the series impedance of electrical conductors above and parallel to the earth. These equations have been analyzed to show their inherent assumptions and what the implications are. Additionally, the lack of validity into higher frequencies has been demonstrated, showing the need to replace Carson’s formulas for these types of studies. This body of work leads to several conclusions about the relatively new study of BPL. Foremost, there is a gap in modeling capabilities which has been bridged through integration of circuit-based and electromagnetics modeling, allowing more realistic prediction of BPL performance and radiated fields. The proposed approach is limited in its scope of validity due to the formulas used by EMTP-type software. To extend the range of validity, a new set of equations must be identified and implemented in the approach. Several potential methods of implementation have been explored. Though an appropriate set of equations has not yet been identified, further research in this area will benefit from a clear depiction of the next important steps and how they can be accomplished.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the application of time-reversed electromagnetic wave propagation to transmit energy in a wireless power transmission system. “Time reversal” is a signal focusing method that exploits the time reversal invariance of the lossless wave equation to direct signals onto a single point inside a complex scattering environment. In this work, we explore the properties of time reversed microwave pulses in a low-loss ray-chaotic chamber. We measure the spatial profile of the collapsing wavefront around the target antenna, and demonstrate that time reversal can be used to transfer energy to a receiver in motion. We demonstrate how nonlinear elements can be controlled to selectively focus on one target out of a group. Finally, we discuss the design of a rectenna for use in a time reversal system. We explore the implication of these results, and how they may be applied in future technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An exact expression is derived for the time-averaged electromagnetic energy within a magneto-dielectric coated sphere, which is irradiated by a plane and time-harmonic electromagnetic wave. Both the spherical shell and core are considered to be dispersive and lossy, with a realistic dispersion relation of an isotropic split-ring resonator metamaterial. We obtain analytical expressions for the stored electromagnetic energies inside the core and the shell separately and calculate their contributions to the total average energy density. The stored electromagnetic energy is calculated for two situations involving a metamaterial coated sphere: a dielectric shell and dispersive metamaterial core, and vice versa. An explicit relation between the stored energy and the optical absorption efficiency is also obtained. We show that the stored electromagnetic energy is an observable sensitive to field interferences responsible for the Fano effect. This result, together with the fact that the Fano effect is more likely to occur in metamaterials with negative refraction, suggest that our findings may be explored in applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We compute the shift in the frequency of the spin resonance in a solid that rotates in the field of a circularly polarized electromagnetic wave. Electron-spin resonance, nuclear magnetic resonance, and ferromagnetic resonance are considered. We show that contrary to the case of the rotating LC circuit, the shift in the frequency of the spin resonance has strong dependence on the symmetry of the receiver. The shift due to rotation occurs only when rotational symmetry is broken by the anisotropy of the gyromagnetic tensor, by the shape of the body or by magnetocrystalline anisotropy. General expressions for the resonance frequency and power absorption are derived and implications for experiment are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The presented thesis is devoted to investigation of wave processes in hybrid ferrite / ferroelectric structures. Spin wave devices based on ferrite films have such disadvantages, as huge size of the magnetic systems, low tuning velocity, considerable power inputs for parameters control that limits possible device applications. The considered layered structures allow to overcome the disadvantages mentioned and to promote the development of novel class of tunable microwave devices. The proposed theoretical analysis is intended to construct a model of hybrid electromagnetic-spin waves. Based on the theoretical analysis the experimental investigations were carried out. The experimental resonance characteristics of ferrite / ferroelectric resonator were obtained and their tunability by means of magnetic and electric field was demonstrated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work devotes to the theoretical investigations of spin-electromagnetic waves (SEW) propagating in a thin-film multiferroic structures that were composed of a slot-line and structures with several ferrite films. In contrast to earlier works, the spin-electromagnetic waves in the investigated structures are originated from two different electrodynamics coupling. The first one is coupling of the electromagnetic wave localized mainly in the slot-line with the spin wave excited mostly in the ferrite film. The second one is coupling of two spin waves in the different ferrite films separated by a thin ferroelectric film. For theoretical analysis of SEWs propagation in such kind of structures theories of their eigen-wave spectra were developed. Spectra of SEW in the investigated structures were calculated and analyzed. The range of electric and magnetic tunability of dispersion characteristic were investigated. Spectra of SEW in the investigated multiferroic structures are used for investigation of transfer function of periodic structures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this communication, we discuss the details of fabricating an off-line fibre optic sensor (FOS) based on evanescent wave absorption for detecting trace amounts of Fe3+ in water. Two types of FOS are developed; one type uses the unclad portion of a multimode silica fibre as the sensing region whereas the other employs the microbent portion of a multimode plastic fibre as the sensing region. Sensing is performed by measuring the absorption of the evanescent wave in a reagent medium surrounding the sensing region. To evaluate the relative merits of the two types of FOS in Fe3+ sensing, a comparative study of the sensors is made, which reveals the superiority of the latter in many respects, such as smaller sensing length, use of a double detection scheme (for detecting both core and cladding modes) and higher sensitivity of cladding mode detection at an intermediate range of concentration along with the added advantage that plastic fibres are inexpensive. A detection limit of 1 ppb is observed in both types of fibre and the range of detection can be as large as 1 ppb–50 ppm. All the measurements are carried out using a LabVIEW set-up.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this communication, we discuss the details of fabricating an off-line fibre optic sensor (FOS) based on evanescent wave absorption for detecting trace amounts of Fe3+ in water. Two types of FOS are developed; one type uses the unclad portion of a multimode silica fibre as the sensing region whereas the other employs the microbent portion of a multimode plastic fibre as the sensing region. Sensing is performed by measuring the absorption of the evanescent wave in a reagent medium surrounding the sensing region. To evaluate the relative merits of the two types of FOS in Fe3+ sensing, a comparative study of the sensors is made, which reveals the superiority of the latter in many respects, such as smaller sensing length, use of a double detection scheme (for detecting both core and cladding modes) and higher sensitivity of cladding mode detection at an intermediate range of concentration along with the added advantage that plastic fibres are inexpensive. A detection limit of 1 ppb is observed in both types of fibre and the range of detection can be as large as 1 ppb–50 ppm. All the measurements are carried out using a LabVIEW set-up.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this communication, we discuss the details of fabricating an off-line fibre optic sensor (FOS) based on evanescent wave absorption for detecting trace amounts of Fe3+ in water. Two types of FOS are developed; one type uses the unclad portion of a multimode silica fibre as the sensing region whereas the other employs the microbent portion of a multimode plastic fibre as the sensing region. Sensing is performed by measuring the absorption of the evanescent wave in a reagent medium surrounding the sensing region. To evaluate the relative merits of the two types of FOS in Fe3+ sensing, a comparative study of the sensors is made, which reveals the superiority of the latter in many respects, such as smaller sensing length, use of a double detection scheme (for detecting both core and cladding modes) and higher sensitivity of cladding mode detection at an intermediate range of concentration along with the added advantage that plastic fibres are inexpensive. A detection limit of 1 ppb is observed in both types of fibre and the range of detection can be as large as 1 ppb–50 ppm. All the measurements are carried out using a LabVIEW set-up.