972 resultados para Electrodes, Implanted


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A screw microdrive is described that attaches to the grid system used for recording single neurons from brains of awake behaving monkeys. Multiple screwdrives can be mounted on a grid over a single cranial opening. This method allows many electrodes to be implanted chronically in the brain and adjusted as needed to maintain isolation. rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The possibility of using a radial basis function neural network (RBFNN) to accurately recognise and predict the onset of Parkinson’s disease tremors in human subjects is discussed in this paper. The data for training the RBFNN are obtained by means of deep brain electrodes implanted in a Parkinson disease patient’s brain. The effectiveness of a RBFNN is initially demonstrated by a real case study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deep Brain Stimulation (DBS) has been successfully used throughout the world for the treatment of Parkinson's disease symptoms. To control abnormal spontaneous electrical activity in target brain areas DBS utilizes a continuous stimulation signal. This continuous power draw means that its implanted battery power source needs to be replaced every 18–24 months. To prolong the life span of the battery, a technique to accurately recognize and predict the onset of the Parkinson's disease tremors in human subjects and thus implement an on-demand stimulator is discussed here. The approach is to use a radial basis function neural network (RBFNN) based on particle swarm optimization (PSO) and principal component analysis (PCA) with Local Field Potential (LFP) data recorded via the stimulation electrodes to predict activity related to tremor onset. To test this approach, LFPs from the subthalamic nucleus (STN) obtained through deep brain electrodes implanted in a Parkinson patient are used to train the network. To validate the network's performance, electromyographic (EMG) signals from the patient's forearm are recorded in parallel with the LFPs to accurately determine occurrences of tremor, and these are compared to the performance of the network. It has been found that detection accuracies of up to 89% are possible. Performance comparisons have also been made between a conventional RBFNN and an RBFNN based on PSO which show a marginal decrease in performance but with notable reduction in computational overhead.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deep Brain Stimulation (DBS) is a treatment routinely used to alleviate the symptoms of Parkinson's disease (PD). In this type of treatment, electrical pulses are applied through electrodes implanted into the basal ganglia of the patient. As the symptoms are not permanent in most patients, it is desirable to develop an on-demand stimulator, applying pulses only when onset of the symptoms is detected. This study evaluates a feature set created for the detection of tremor - a cardinal symptom of PD. The designed feature set was based on standard signal features and researched properties of the electrical signals recorded from subthalamic nucleus (STN) within the basal ganglia, which together included temporal, spectral, statistical, autocorrelation and fractal properties. The most characterized tremor related features were selected using statistical testing and backward algorithms then used for classification on unseen patient signals. The spectral features were among the most efficient at detecting tremor, notably spectral bands 3.5-5.5 Hz and 0-1 Hz proved to be highly significant. The classification results for determination of tremor achieved 94% sensitivity with specificity equaling one.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to test the application and value of electrocorticography (ECG) in the early diagnosis and characterization of electrocorticograms changes on experimental fulminant hepatic failure (FHF). Our material was composed of two groups of guinea pigs: a) ethanolamine group--42 animals with FHF induced by intrabiliary injection of 2.5 ml of monoethanolamine oleate; b) control group--10 animals submitted to intrabiliary injection of 2.5 ml of saline. Electrocorticograms recordings were taken in both groups with the electrodes implanted on the parieto-occipital regions of the skull. The hepatic failure was characterized by clinical manifestations, serum biochemical tests and histopathological findings. In the early hepatic coma the electrocorticograms could not be unequivocally distinguished from normal pattern, and alpha rhythm was recognizable in most animals. With further deterioration of the clinical condition the tracing showed progressive slowness of the normal rhythm, increased voltage and triphasic waves followed by suppression of electrical activity preceding the animal death. The electrocorticography was not suitable for the early diagnosis of hepatic coma, since the ECG alterations became evident only in overt coma. However the method could be useful for the characterization of cerebral disorders and the study of the pathogenesis of fulminant hepatic failure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this study is to analyze the simultaneity of the actions of the three portions of the trapezius (superior portion = TS; middle portion = TM and inferior portion = TI) in elevation, lowering, retraction and protraction of the shoulders. The electromyographic tests were carried out in 20 volunteers using a 4-channel TECA TE 2-7 electromyograph and surface and single coaxial needle electrodes. The electromyographs, obtained with the two types of electrodes, show that in elevation and lowering of the shoulders, TS and TM present increasing and decreasing activity, respectively, from the beginning until the end of these movements. In retraction of the shoulders, TM and TI present increasing activity from the beginning to the end of the movement. In protraction, TS, TM and TI do not show any activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two experiments evaluated an operant procedure for establishing stimulus control using auditory and electrical stimuli as a baseline for measuring the electrical current threshold of electrodes implanted in the cochlea. Twenty-one prelingually deaf children, users of cochlear implants, learned a Go/No Go auditory discrimination task (i.e., pressing a button in the presence of the stimulus but not in its absence). When the simple discrimination baseline became stable, the electrical current was manipulated in descending and ascending series according to an adapted staircase method. Thresholds were determined for three electrodes, one in each location in the cochlea (basal, medial, and apical). Stimulus control was maintained within a certain range of decreasing electrical current but was eventually disrupted. Increasing the current recovered stimulus control, thus allowing the determination of a range of electrical currents that could be defined as the threshold. The present study demonstrated the feasibility of the operant procedure combined with a psychophysical method for threshold assessment, thus contributing to the routine fitting and maintenance of cochlear implants within the limitations of a hospital setting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. 1. A polarographic method for the measurement of the available oxygen in the muscle of living carp by the use of a platinum microelectrode is proposed. 2. 2. The oxygen and the reference electrodes were assembled in a single insertion piece which was implanted in the muscle of a living carp maintained in a special experimental chamber. 3. 3. Curves for normal oxygen levels corresponding to air-saturated water, as well as to a carbogene-saturated water, were obtained. 4. 4. The method can be considered adequate for the measurement of tissue oxygen in living fishes. © 1984.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Subfields of the hippocampus display differential dynamics in processing a spatial environment, especially when changes are introduced to the environment. Specifically, when familiar cues in the environment are spatially rearranged, place cells in the CA3 subfield tend to rotate with a particular set of cues (e.g., proximal cues), maintaining a coherent spatial representation. Place cells in CA1, in contrast, display discordant behaviors (e.g., rotating with different sets of cues or remapping) in the same condition. In addition, on average, CA3 place cells shift their firing locations (measured by the center of mass, or COM) backward over time when the animal encounters the changed environment for the first time, but not after that first experience. However, CA1 displays an opposite pattern, in which place cells exhibit the backward COM-shift only from the second day of experience, but not on the first day. Here, we examined the relationship between the environment-representing behavior (i.e., rotation vs. remapping) and the COM-shift of place fields in CA1 and CA3. Both in CA1 and CA3, the backward (as well as forward) COM-shift phenomena occurred regardless of the rotating versus remapping of the place cell. The differential, daily time course of the onset/offset of backward COM-shift in the cue-altered environment in CA1 and CA3 (on day 1 in CA1 and from day 2 onward in CA3) stems from different population dynamics between the subfields. The results suggest that heterogeneous, complex plasticity mechanisms underlie the environment-representating behavior (i.e., rotate/remap) and the COM-shifting behavior of the place cell.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An experimental procedure was developed using the Brainstem Evoked Response (BER) electrophysiological technique to assess the effect of neurotoxic substances on the auditory system. The procedure utilizes Sprague-Dawley albino rats who have had dural electrodes implanted in their skulls, allowing neuroelectric evoked potentials to be recorded from their brainstems. Latency and amplitude parameters derived from the evoked potentials help assess the neuroanatomical integrity of the auditory pathway in the brainstem. Moreover, since frequency-specific auditory stimuli are used to evoke the neural responses, additional audiometric information is obtainable. An investigation on non-exposed control animals shows the BER threshold curve obtained by tests at various frequencies very closely approximates that obtained by behavioral audibility tests. Thus, the BER appears to be a valid measure of both functional and neuroanatomical integrity of the afferent auditory neural pathway.^ To determine the usefulness of the BER technique in neurobehavioral toxicology research, a known neurotoxic agent, Pb, was studied. Female Sprague-Dawley rats were dosed for 45 days with low levels of Pb acetate in their drinking water, after which BER recordings were obtained. The Pb dosages were determined from the findings of an earlier pilot study. One group of 6 rats received normal tap water, one group of 7 rats received a solution of 0.1% Pb, and another group of 7 rats received a solution of 0.2% Pb. After 45 days, the three groups exhibited blood Pb levels of 4.5 (+OR-) 0.43 (mu)g/100 ml, 37.8 (+OR-) 4.8 (mu)g/100 ml and 47.3 (+OR-) 2.7 (mu)g/100 ml, respectively.^ The results of the BER recording indicated evoked response waveform latency abnormalities in both the Pb-treated groups when midrange frequency (8 kHz to 32 kHz) stimuli were used. For the most part, waveform amplitudes did not vary significantly from control values. BER recordings obtained after a 30-day recovery period indicated the effects seen in the 0.1% Pb group had disappeared. However, those anomalies exhibited by the 0.2% Pb group either remained or increased in number. This outcome indicates a longer lasting or possibly irreversible effect on the auditory system from the higher dose of Pb. The auditory pathway effect appears to be in the periphery, at the level of the cochlea or the auditory (VIII) nerve. The results of this research indicate the BER technique is a valuable and sensitive indicator of low-level toxic effects on the auditory system.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe experiments on behaving rats with electrodes implanted on the cornea, in the optic chiasm, and on the visual cortex; in addition, two red light-emitting diodes (LED) are permanently attached to the skull over the left eye. Recordings timelocked to the LED flashes reveal both the local events at each electrode site and the orderly transfer of visual information from retina to cortex. The major finding is that every stimulus, regardless of its luminance, duration, or the state of retinal light adaptation, elicits an optic nerve volley with a latency of about 10 ms and a duration of about 300 ms. This phenomenon has not been reported previously, so far as we are aware. We conclude that the retina, which originates from the forebrain of the developing embryo, behaves like a typical brain structure: it translates, within a few hundred milliseconds, the chemical information in each pattern of bleached photoreceptors into a corresponding pattern of ganglion cell neuronal information that leaves via the optic nerve. The attributes of each rat ganglion cell appear to include whether the retinal neuropile calls on it to leave after a stimulus and, if so when, within a 300-ms poststimulus epoch. The resulting retinal analysis of the scene, on arrival at the cortical level, is presumed to participate importantly in the creation of visual perceptual experiences.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recordings were obtained from the visual system of rats as they cycled normally between waking (W), slow-wave sleep (SWS), and rapid eye movement (REM) sleep. Responses to flashes delivered by a light-emitting diode attached permanently to the skull were recorded through electrodes implanted on the cornea, in the chiasm, and on the cortex. The chiasm response reveals the temporal order in which the activated ganglion cell population exits the eyeball; as reported, this triphasic event is invariably short in latency (5–10 ms) and around 300 ms in duration, called the histogram. Here we describe the differences in the histograms recorded during W, SWS, and REM. SWS histograms are always larger than W histograms, and an REM histogram can resemble either. In other words, the optic nerve response to a given stimulus is labile; its configuration depends on whether the rat is asleep or awake. We link this physiological information with the anatomical fact that the brain dorsal raphe region, which is known to have a sleep regulatory role, sends fibers to the rat retina and receives fibers from it. At the cortical electrode, the visual cortical response amplitudes also vary, being largest during SWS. This well known phenomenon often is explained by changes taking place at the thalamic level. However, in the rat, the labile cortical response covaries with the labile optic nerve response, which suggests the cortical response enhancement during SWS is determined more by what happens in the retina than by what happens in the thalamus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In mammals, gonadal function is controlled by a hypothalamic signal generator that directs the pulsatile release of gonadotropin-releasing hormone (GnRH) and the consequent pulsatile secretion of luteinizing hormone. In female rhesus monkeys, the electrophysiological correlates of GnRH pulse generator activity are abrupt, rhythmic increases in hypothalamic multiunit activity (MUA volleys), which represent the simultaneous increase in firing rate of individual neurons. MUA volleys are arrested by estradiol, either spontaneously at midcycle or after the administration of the steroid. Multiunit recordings, however, provide only a measure of total neuronal activity, leaving the behavior of the individual cells obscure. This study was conducted to determine the mode of action of estradiol at the level of single neurons associated with the GnRH pulse generator. Twenty-three such single units were identified by cluster analysis of multiunit recordings obtained from a total of six electrodes implanted in the mediobasal hypothalamus of three ovariectomized rhesus monkeys, and their activity was monitored before and after estradiol administration. The bursting of all 23 units was arrested within 4 h of estradiol administration although their baseline activity was maintained. The bursts of most units reappeared at the same time as the MUA volleys, the recovery of some was delayed, and one remained inhibited for the duration of the study (43 days). The results indicate that estradiol does not desynchronize the bursting of single units associated with the GnRH pulse generator but that it inhibits this phenomenon. The site and mechanism of action of estradiol in this regard remain to be determined.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

External sources The National Institute for Health Research (NIHR), UK. This project was supported byNIHR via Cochrane Infrastructure, Cochrane Programme Grant or Cochrane Incentive funding to the Incontinence Group. The views and opinions expressed therein are those of the authors and do not necessarily reflect those of the Systematic Reviews Programme, NIHR, National Health Service (NHS) or the Department of Health. NHS Grampian Endowment Research Grants, UK. This project was also supported by NHS Grampian Endowment Research Grants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Functional Electrical Stimulation (FES) is a technique that consists on applying electrical current pulses to artificially activate motor nerve fibers and produce muscle contractions to achieve functional movements. The main applications of FES are within the rehabilitation field, in which this technique is used to aid recovery or to restore lost motor functions. People that benefit of FES are usually patients with neurological disorders which result in motor dysfunctions; most common patients include stroke and spinal cord injury (SCI). Neuroprosthesis are devices that have their basis in FES technique, and their aim is to bridge interrupted or damaged neural paths between the brain and upper or lower limbs. One of the aims of neuroprosthesis is to artificially generate muscle contractions that produce functional movements, and therefore, assist impaired people by making them able to perform activities of daily living (ADL). FES applies current pulses and stimulates nerve fibers by means of electrodes, which can be either implanted or surface electrodes. Both of them have advantages and disadvantages. Implanted electrodes need open surgery to place them next to the nerve root, so these electrodes carry many disadvantages that are produced by the use of invasive techniques. In return, as the electrodes are attached to the nerve, they make it easier to achieve selective functional movements. On the contrary, surface electrodes are not invasive and are easily attached or detached on the skin. Main disadvantages of surface electrodes are the difficulty of selectively stimulating nerve fibers and uncomfortable feeling perceived by users due to sensory nerves located in the skin. Electrical stimulation surface electrode technology has improved significantly through the years and recently, multi-field electrodes have been suggested. This multi-field or matrix electrode approach brings many advantages to FES; among them it is the possibility of easily applying different stimulation methods and techniques. The main goal of this thesis is therefore, to test two stimulation methods, which are asynchronous and synchronous stimulation, in the upper limb with multi-field electrodes. To this end, a purpose-built wrist torque measuring system and a graphic user interface were developed to measure wrist torque produced with each of the methods and to efficiently carry out the experiments. Then, both methods were tested on 15 healthy subjects and sensitivity results were analyzed for different cases. Results show that there are significant differences between methods regarding sensation in some cases, which can affect effectiveness or success of FES.