893 resultados para Electrode array


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A unique neural electrode design is proposed with 3 mm long shafts made from an aluminum-based substrate. The electrode is composed by 100 individualized shafts in a 10 × 10 matrix, in which each aluminum shafts are precisely machined via dicing-saw cutting programs. The result is a bulk structure of aluminum with 65 ° angle sharp tips. Each electrode tip is covered by an iridium oxide thin film layer (ionic transducer) via pulsed sputtering, that provides a stable and a reversible behavior for recording/stimulation purposes, a 40 mC/cm2 charge capacity and a 145 Ω impedance in a wide frequency range of interest (10 Hz-100 kHz). Because of the non-biocompatibility issue that characterizes aluminum, an anodization process is performed that forms an aluminum oxide layer around the aluminum substrate. The result is a passivation layer fully biocompatible that furthermore, enhances the mechanical properties by increasing the robustness of the electrode. For a successful electrode insertion, a 1.1 N load is required. The resultant electrode is a feasible alternative to silicon-based electrode solutions, avoiding the complexity of its fabrication methods and limitations, and increasing the electrode performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The acute hippocampal brain slice preparation is an important in vitro screening tool for potential anticonvulsants. Application of 4-aminopyridine (4-AP) or removal of external Mg2+ ions induces epileptiform bursting in slices which is analogous to electrical brain activity seen in status epilepticus states. We have developed these epileptiform models for use with multi-electrode arrays (MEAs), allowing recording across the hippocampal slice surface from 59 points. We present validation of this novel approach and analyses using two anticonvulsants, felbamate and phenobarbital, the effects of which have already been assessed in these models using conventional extracellular recordings. In addition to assessing drug effects on commonly described parameters (duration, amplitude and frequency), we describe novel methods using the MEA to assess burst propagation speeds and the underlying frequencies that contribute to the epileptiform activity seen. Contour plots are also used as a method of illustrating burst activity. Finally, we describe hitherto unreported properties of epileptiform bursting induced by 100M4-AP or removal of external Mg2+ ions. Specifically, we observed decreases over time in burst amplitude and increase over time in burst frequency in the absence of additional pharmacological interventions. These MEA methods enhance the depth, quality and range of data that can be derived from the hippocampal slice preparation compared to conventional extracellular recordings. It may also uncover additional modes of action that contribute to anti-epileptiform drug effects

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The acute hippocampal brain slice preparation is an important in vitro screening tool for potential anticonvulsants. Application of 4-aminopyridine (4-AP) or removal of external Mg2+ ions induces epileptiform bursting in slices which is analogous to electrical brain activity seen in status epilepticus states. We have developed these epileptiform models for use with multi-electrode arrays (MEAs), allowing recording across the hippocampal slice surface from 59 points. We present validation of this novel approach and analyses using two anticonvulsants, felbamate and phenobarbital, the effects of which have already been assessed in these models using conventional extracellular recordings. In addition to assessing drug effects on commonly described parameters (duration, amplitude and frequency), we describe novel methods using the MEA to assess burst propagation speeds and the underlying frequencies that contribute to the epileptiform activity seen. Contour plots are also used as a method of illustrating burst activity. Finally, we describe hitherto unreported properties of epileptiform, bursting induced by 100 mu M 4-AP or removal of external Mg2+ ions. Specifically, we observed decreases over time in burst amplitude and increase over time in burst frequency in the absence of additional pharmacological interventions. These MEA methods enhance the depth, quality and range of data that can be derived from the hippocampal slice preparation compared to conventional extracellular recordings. it may also uncover additional modes of action that contribute to anti-epileptiform drug effects. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bewildering complexity of cortical microcircuits at the single cell level gives rise to surprisingly robust emergent activity patterns at the level of laminar and columnar local field potentials (LFPs) in response to targeted local stimuli. Here we report the results of our multivariate data-analytic approach based on simultaneous multi-site recordings using micro-electrode-array chips for investigation of the microcircuitary of rat somatosensory (barrel) cortex. We find high repeatability of stimulus-induced responses, and typical spatial distributions of LFP responses to stimuli in supragranular, granular, and infragranular layers, where the last form a particularly distinct class. Population spikes appear to travel with about 33 cm/s from granular to infragranular layers. Responses within barrel related columns have different profiles than those in neighbouring columns to the left or interchangeably to the right. Variations between slices occur, but can be minimized by strictly obeying controlled experimental protocols. Cluster analysis on normalized recordings indicates specific spatial distributions of time series reflecting the location of sources and sinks independent of the stimulus layer. Although the precise correspondences between single cell activity and LFPs are still far from clear, a sophisticated neuroinformatics approach in combination with multi-site LFP recordings in the standardized slice preparation is suitable for comparing normal conditions to genetically or pharmacologically altered situations based on real cortical microcircuitry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a compliant neural interface designed to record bladder afferent activity. We developed the implant's microfabrication process using multiple layers of silicone rubber and thin metal so that a gold microelectrode array is embedded within four parallel polydimethylsiloxane (PDMS) microchannels (5 mm long, 100 μm wide, 100 μm deep). Electrode impedance at 1 kHz was optimized using a reactive ion etching (RIE) step, which increased the porosity of the electrode surface. The electrodes did not deteriorate after a 3 month immersion in phosphate buffered saline (PBS) at 37 °C. Due to the unique microscopic topography of the metal film on PDMS, the electrodes are extremely compliant and can withstand handling during implantation (twisting and bending) without electrical failure. The device was transplanted acutely to anaesthetized rats, and strands of the dorsal branch of roots L6 and S1 were surgically teased and inserted in three microchannels under saline immersion to allow for simultaneous in vivo recordings in an acute setting. We utilized a tripole electrode configuration to maintain background noise low and improve the signal to noise ratio. The device could distinguish two types of afferent nerve activity related to increasing bladder filling and contraction. To our knowledge, this is the first report of multichannel recordings of bladder afferent activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cochlear implants have been of great benefit in restoring auditory function to individuals with profound bilateral sensorineural deafness. The implants are used to directly stimulate auditory nerves and send a signal to the brain that is then interpreted as sound. This project focuses on the development of a surgical positioning tool to accurately and effectively place an array of stimulating electrodes deep within the cochlea. This will lead to improved efficiency and performance of the stimulating electrodes, reduced surgical trauma to the cochlea, and as a result, improved overall performance to the implant recipient. The positioning tool reported here consists of multiple fluidic chambers providing localized curvature control along the length of the attached silicon electrode array. The chambers consist of 200μm inner diameter PET (polyethylene therephthalate) tubes with 4μm wall thickness. The chambers are molded in a tapered helical configuration to correspond to the cochlear shape upon relaxation of the actuators. This ensures that the optimal electrode placement within the cochlea is retained after the positioning tool becomes dormant (for chronic implants). Actuation is achieved by injecting fluid into the PET chambers and regulating the fluidic pressure. The chambers are arranged in a stacked, overlapping design to provide fluid connectivity with the non-implantable pressure controller and allow for local curvature control of the device. The stacked tube configuration allows for localized curvature control of various areas along the length of the electrode and additional stiffening and actuating power towards the base. Curvature is affected along the entire length of a chamber and the result is cumulative in sections of multiple chambers. The actuating chambers are bonded to the back of a silicon electrode array.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of a high-density active microelectrode array for in vitro electrophysiology is reported. Based on the Active Pixel Sensor (APS) concept, the array integrates 4096 gold microelectrodes (electrode separation 20 microm) on a surface of 2.5 mmx2.5 mm as well as a high-speed random addressing logic allowing the sequential selection of the measuring pixels. Following the electrical characterization in a phosphate solution, the functional evaluation has been carried out by recording the spontaneous electrical activity of neonatal rat cardiomyocytes. Signals with amplitudes from 130 microVp-p to 300 microVp-p could be recorded from different pixels. The results demonstrate the suitability of the APS concept for developing a new generation of high-resolution extracellular recording devices for in vitro electrophysiology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HYPOTHESIS To evaluate the feasibility and the results of insertion of two types of electrode arrays in a robotically assisted surgical approach. BACKGROUND Recent publications demonstrated that robot-assisted surgery allows the implantation of free-fitting electrode arrays through a cochleostomy drilled via a narrow bony tunnel (DCA). We investigated if electrode arrays from different manufacturers could be used with this approach. METHODS Cone-beam CT imaging was performed on fivecadaveric heads after placement of fiducial screws. Relevant anatomical structures were segmented and the DCA trajectory, including the position of the cochleostomy, was defined to target the center of the scala tympani while reducing the risk of lesions to the facial nerve. Med-El Flex 28 and Cochlear CI422 electrodes were implanted on both sides, and their position was verified by cone-beam CT. Finally, temporal bones were dissected to assess the occurrence of damage to anatomical structures during DCA drilling. RESULTS The cochleostomy site was directed in the scala tympani in 9 of 10 cases. The insertion of electrode arrays was successful in 19 of 20 attempts. No facial nerve damage was observed. The average difference between the planned and the postoperative trajectory was 0.17 ± 0.19 mm at the level of the facial nerve. The average depth of insertion was 305.5 ± 55.2 and 243 ± 32.1 degrees with Med-El and Cochlear arrays, respectively. CONCLUSIONS Robot-assisted surgery is a reliable tool to allow cochlear implantation through a cochleostomy. Technical solutions must be developed to improve the electrode array insertion using this approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have fabricated a compliant neural interface to record afferent nerve activity. Stretchable gold electrodes were evaporated on a polydimethylsiloxane (PDMS) substrate and were encapsulated using photo-patternable PDMS. The built-in microstructure of the gold film on PDMS allows the electrodes to twist and flex repeatedly, without loss of electrical conductivity. PDMS microchannels (5mm long, 100μm wide, 100μm deep) were then plasma bonded irreversibly on top of the electrode array to define five parallel-conduit implants. The soft gold microelectrodes have a low impedance of ~200kΩ at the 1kHz frequency range. Teased nerves from the L6 dorsal root of an anaesthetized Sprague Dawley rat were threaded through the microchannels. Acute tripolar recordings of cutaneous activity are demonstrated, from multiple nerve rootlets simultaneously. Confinement of the axons within narrow microchannels allows for reliable recordings of low amplitude afferents. This electrode technology promises exciting applications in neuroprosthetic devices including bladder fullness monitors and peripheral nervous system implants.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Linking the structural connectivity of brain circuits to their cooperative dynamics and emergent functions is a central aim of neuroscience research. Graph theory has recently been applied to study the structure-function relationship of networks, where dynamical similarity of different nodes has been turned into a "static" functional connection. However, the capability of the brain to adapt, learn and process external stimuli requires a constant dynamical functional rewiring between circuitries and cell assemblies. Hence, we must capture the changes of network functional connectivity over time. Multi-electrode array data present a unique challenge within this framework. We study the dynamics of gamma oscillations in acute slices of the somatosensory cortex from juvenile mice recorded by planar multi-electrode arrays. Bursts of gamma oscillatory activity lasting a few hundred milliseconds could be initiated only by brief trains of electrical stimulations applied at the deepest cortical layers and simultaneously delivered at multiple locations. Local field potentials were used to study the spatio-temporal properties and the instantaneous synchronization profile of the gamma oscillatory activity, combined with current source density (CSD) analysis. Pair-wise differences in the oscillation phase were used to determine the presence of instantaneous synchronization between the different sites of the circuitry during the oscillatory period. Despite variation in the duration of the oscillatory response over successive trials, they showed a constant average power, suggesting that the rate of expenditure of energy during the gamma bursts is consistent across repeated stimulations. Within each gamma burst, the functional connectivity map reflected the columnar organization of the neocortex. Over successive trials, an apparently random rearrangement of the functional connectivity was observed, with a more stable columnar than horizontal organization. This work reveals new features of evoked gamma oscillations in developing cortex.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We examine the efficacy two volume spatial registration of pre and postoperative clinical computed tomography (CT) imaging to verify post-operative electrode array placement in cochlear implant (CI) patients. To measure the degree of accuracy with which the composite image predicts in-vivo placement of the array, we replicate the CI surgical process in cadaver heads. Pre-operative, post-operative, micro CT imaging and histology are utilized for verification.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We are reporting on the fabrication and electrical characterization of a novel elastomer based micro-cuff neural interface. Electrodes are gold (Au) tracks of sub-100nm thickness and are thermally evaporated on a 0.5 mm thick polydimethylsiloxane (PDMS) substrate. We investigate how electrode area and immersion in phosphate buffered saline (PBS) at 37°C influence electrode impedance. A microfluidic channel is bonded to the electrode array to form the cuff. In an acute, in-vivo, proof-of-principle recording, the device is capable of detecting light stroking and pinch of a hind leg of an anaesthetized rat.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Delivering cochlear implants through a minimally invasive tunnel (1.8 mm in diameter) from the mastoid surface to the inner ear is referred to as direct cochlear access (DCA). Based on cone beam as well as micro-computed tomography imaging, this in vitro study evaluates the feasibility and efficacy of manual cochlear electrode array insertions via DCA. Free-fitting electrode arrays were inserted in 8 temporal bone specimens with previously drilled DCA tunnels. The insertion depth angle, procedural time, tunnel alignment as well as the inserted scala and intracochlear trauma were assessed. Seven of the 8 insertions were full insertions, with insertion depth angles higher than 520°. Three cases of atraumatic scala tympani insertion, 3 cases of probable basilar membrane rupture and 1 case of dislocation into the scala vestibuli were observed (1 specimen was damaged during extraction). Manual electrode array insertion following a DCA procedure seems to be feasible and safe and is a further step toward clinical application of image-guided otological microsurgery.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVE Cochlear implants (CIs) have become the gold standard treatment for deafness. These neuroprosthetic devices feature a linear electrode array, surgically inserted into the cochlea, and function by directly stimulating the auditory neurons located within the spiral ganglion, bypassing lost or not-functioning hair cells. Despite their success, some limitations still remain, including poor frequency resolution and high-energy consumption. In both cases, the anatomical gap between the electrode array and the spiral ganglion neurons (SGNs) is believed to be an important limiting factor. The final goal of the study is to characterize response profiles of SGNs growing in intimate contact with an electrode array, in view of designing novel CI devices and stimulation protocols, featuring a gapless interface with auditory neurons. APPROACH We have characterized SGN responses to extracellular stimulation using multi-electrode arrays (MEAs). This setup allows, in our view, to optimize in vitro many of the limiting interface aspects between CIs and SGNs. MAIN RESULTS Early postnatal mouse SGN explants were analyzed after 6-18 days in culture. Different stimulation protocols were compared with the aim to lower the stimulation threshold and the energy needed to elicit a response. In the best case, a four-fold reduction of the energy was obtained by lengthening the biphasic stimulus from 40 μs to 160 μs. Similarly, quasi monophasic pulses were more effective than biphasic pulses and the insertion of an interphase gap moderately improved efficiency. Finally, the stimulation with an external electrode mounted on a micromanipulator showed that the energy needed to elicit a response could be reduced by a factor of five with decreasing its distance from 40 μm to 0 μm from the auditory neurons. SIGNIFICANCE This study is the first to show electrical activity of SGNs on MEAs. Our findings may help to improve stimulation by and to reduce energy consumption of CIs and thereby contribute to the development of fully implantable devices with better auditory resolution in the future.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study evaluated the effectiveness of electrotactile tongue biofeedback (BrainPort (R)) as a sensory substitute for the vestibular apparatus in patients with bilateral vestibular loss (BVL) who did not have a good response to conventional vestibular rehabilitation (VR). Seven patients with BVL were trained to use the device. Stimulation on the surface of the tongue was created by a dynamic pattern of electrical pulses and the patient was able to adjust the intensity of stimulation and spatially centralize the stimulus on the electrode array. Patients were directed to continuously adjust head orientation and to maintain the stimulus pattern at the center of the array. Postural tasks that present progressive difficulties were given during the use of the device. Pre- and post-treatment distribution of the sensory organization test (SOT) composite score showed an average value of 38.3 +/- 8.7 and 59.9 +/- 11.3, respectively, indicating a statistically significant improvement (p = 0.01). Electrotactile tongue biofeedback significantly improved the postural control of the study group, even if they had not improved with conventional VR. The electrotactile tongue biofeedback system was able to supply additional information about head position with respect to gravitational vertical orientation in the absence of vestibular input, improving postural control. Patients with BVL can integrate electrotactile information in their postural control in order to improve stability after conventional VR. These results were obtained and verified not only by the subjective questionnaire but also by the SOT composite score. The limitations of the study are the small sample size and short duration of the follow-up. The current findings show that the sensory substitution mediated by electrotactile tongue biofeedback may contribute to the improved balance experienced by these patients compared to VR. (C) 2010 Elsevier Ireland Ltd. All rights reserved.