937 resultados para Electricity market prices
Resumo:
This paper presents an artificial neural network applied to the forecasting of electricity market prices, with the special feature of being dynamic. The dynamism is verified at two different levels. The first level is characterized as a re-training of the network in every iteration, so that the artificial neural network can able to consider the most recent data at all times, and constantly adapt itself to the most recent happenings. The second level considers the adaptation of the neural network’s execution time depending on the circumstances of its use. The execution time adaptation is performed through the automatic adjustment of the amount of data considered for training the network. This is an advantageous and indispensable feature for this neural network’s integration in ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to the market negotiating players of MASCEM (Multi-Agent Simulator of Competitive Electricity Markets).
Resumo:
This paper studies the impact of energy and stock markets upon electricity markets using Multidimensional Scaling (MDS). Historical values from major energy, stock and electricity markets are adopted. To analyze the data several graphs produced by MDS are presented and discussed. This method is useful to have a deeper insight into the behavior and the correlation of the markets. The results may also guide the construction models, helping electricity markets agents hedging against Market Clearing Price (MCP) volatility and, simultaneously, to achieve better financial results.
Resumo:
This paper studies the impact of the energy upon electricity markets using Multidimensional Scaling (MDS). Data from major energy and electricity markets is considered. Several maps produced by MDS are presented and discussed revealing that this method is useful for understanding the correlation between them. Furthermore, the results help electricity markets agents hedging against Market Clearing Price (MCP) volatility.
Resumo:
In liberalized electricity markets, generation Companies must build an hourly bidthat is sent to the market operator. The price at which the energy will be paid is unknown during the bidding process and has to be forecast. In this work we apply forecasting factor models to this framework and study its suitability.
Resumo:
This paper deals with the problem of coordinated trading of wind and photovoltaic systems in order to find the optimal bid to submit in a pool-based electricity market. The coordination of wind and photovoltaic systems presents uncertainties not only due to electricity market prices, but also with wind and photovoltaic power forecast. Electricity markets are characterized by financial penalties in case of deficit or excess of generation. So, the aim o this work is to reduce these financial penalties and maximize the expected profit of the power producer. The problem is formulated as a stochastic linear programming problem. The proposed approach is validated with real data of pool-based electricity market of Iberian Peninsula.
Resumo:
We use a simulation model to study how the diversification of electricity generation portfoliosinfluences wholesale prices. We find that technological diversification generally leads to lower market prices but that the relationship is mediated by the supply to demand ratio. In each demand case there is a threshold where pivotal dynamics change. Pivotal dynamics pre- and post-threshold are the cause of non-linearities in the influence of diversification on market prices. The findings are robust to our choice of behavioural parameters and match close-form solutions where those are available.
Resumo:
Price forecast is a matter of concern for all participants in electricity markets, from suppliers to consumers through policy makers, which are interested in the accurate forecast of day-ahead electricity prices either for better decisions making or for an improved evaluation of the effectiveness of market rules and structure. This paper describes a methodology to forecast market prices in an electricity market using an ARIMA model applied to the conjectural variations of the firms acting in an electricity market. This methodology is applied to the Iberian electricity market to forecast market prices in the 24 hours of a working day. The methodology was then compared with two other methodologies, one called naive and the other a direct forecast of market prices using also an ARIMA model. Results show that the conjectural variations price forecast performs better than the naive and that it performs slightly better than the direct price forecast.
Resumo:
The energy sector in industrialized countries has been restructured in the last years, with the purpose of decreasing electricity prices through the increase in competition, and facilitating the integration of distributed energy resources. However, the restructuring process increased the complexity in market players' interactions and generated emerging problems and new issues to be addressed. In order to provide players with competitive advantage in the market, decision support tools that facilitate the study and understanding of these markets become extremely useful. In this context arises MASCEM (Multi-Agent Simulator of Competitive Electricity Markets), a multi-agent based simulator that models real electricity markets. To reinforce MASCEM with the capability of recreating the electricity markets reality in the fullest possible extent, it is crucial to make it able to simulate as many market models and player types as possible. This paper presents a new negotiation model implemented in MASCEM based on the negotiation model used in day-ahead market (Elspot) of Nord Pool. This is a key module to study competitive electricity markets, as it presents well defined and distinct characteristics from the already implemented markets, and it is a reference electricity market in Europe (the one with the larger amount of traded power).
Resumo:
We use experiments to study the efficiency effects for a market as a whole of adding the possibility of forward contracting to a pre-existing spot market. We deal separately with the cases where spot market competition is in quantities and where it is in supply functions. In both cases we compare the effect of adding a contract market with the introduction of an additional competitor, changing the market structure from a triopoly to a quadropoly. We find that, as theory suggests, for both types of competition the introduction of a forward market significantly lowers prices. The combination of supply function competition with a forward market leads to high efficiency levels.
Resumo:
The Thesis is dedicated to development of an operative tool to support decision making in after spot trading on the Nordic electricity market. The basics of the Nordic electricity market, trading mechanisms on the spot and after spot markets are presented in the Thesis. Mathematical equations that describe electricity balance condition in the power system are offered. The main driving factors that impact deviation of actual electricity balance from the scheduled one (object) in the power system have been explored and mathematically defined. The behavioral model of the object and principal trends in change of state of the object under an impact of the driving factors are determined with the help of regression analysis made in Microsoft Office Excel. The behavioral model gives an indication for the total regulation volume (Elbas trades volume, volume of regulation market, balance power) for a certain hour that serves as the base input in estimating prices on the after spot markets. Proposals for development of methodologies of forecasting the after spot electricity prices are offered.
Resumo:
The aim of this work is to compare two families of mathematical models for their respective capability to capture the statistical properties of real electricity spot market time series. The first model family is ARMA-GARCH models and the second model family is mean-reverting Ornstein-Uhlenbeck models. These two models have been applied to two price series of Nordic Nord Pool spot market for electricity namely to the System prices and to the DenmarkW prices. The parameters of both models were calibrated from the real time series. After carrying out simulation with optimal models from both families we conclude that neither ARMA-GARCH models, nor conventional mean-reverting Ornstein-Uhlenbeck models, even when calibrated optimally with real electricity spot market price or return series, capture the statistical characteristics of the real series. But in the case of less spiky behavior (System prices), the mean-reverting Ornstein-Uhlenbeck model could be seen to partially succeeded in this task.
Resumo:
The Nordic electricity market is often seen as an example of how to create a working, developed and integrated electricity market. Nevertheless, this thesis studies the obstacles of transmission network investments and the market integration challenges in the Nordic electricity market. The main focus is in the Nordic Transmission system operators (TSOs), which have a key role in grid development. This study introduces a case study of cancellation of South-West link, Western part, which was seen as essential grid investment in order to improve the Nordic electricity market functioning but ended up with cancellation in 2013. This study includes semi-structured theme interviews of the experts among Nordic electricity industry stakeholders. Despite the political will to create more equal prices for electricity in the Nordic market, the differing national regulation, mixed incentives created by bottleneck income and the focus moving from Nordic integration to European integration may create challenges to the Nordic electricity market integration in the future.
Resumo:
If electricity users adjusted their consumption patterns according to time-variable electricity prices or other signals about the state of the power system, generation and network assets could be used more efficiently, and matching intermittent renewable power generation with electricity demand would be facilitated. This kind of adjustment of electricity consumption, or demand response, may be based on consumers’ decisions to shift or reduce electricity use in response to time-variable electricity prices or on the remote control of consumers’ electric appliances. However, while demand response is suggested as a solution to many issues in power systems, actual experiences from demand response programs with residential customers are mainly limited to short pilots with a small number of voluntary participants, and information about what kinds of changes consumers are willing and able to make and what motivates these changes is scarce. This doctoral dissertation contributes to the knowledge about what kinds of factors impact on residential consumers’ willingness and ability to take part in demand response. Saving opportunities calculated with actual price data from the Finnish retail electricity market are compared with the occurred supplier switching to generate a first estimate about how large savings could trigger action also in the case of demand response. Residential consumers’ motives to participate in demand response are also studied by a web-based survey with 2103 responses. Further, experiences of households with electricity consumption monitoring systems are discussed to increase knowledge about consumers’ interest in getting more information on their electricity use and adjusting their behavior based on it. Impacts of information on willingness to participate in demand response programs are also approached by a survey for experts of their willingness to engage in demand response activities. Residential customers seem ready to allow remote control of electric appliances that does not require changes in their everyday routines. Based on residents’ own activity, the electricity consuming activities that are considered shiftable are very limited. In both cases, the savings in electricity costs required to allow remote control or to engage in demand response activities are relatively high. Nonmonetary incentives appeal to fewer households.
Resumo:
This paper focuses upon the policy and institutional change that has taken place within the Argentine electricity market since the country’s economic and social crisis of 2001/2. As one of the first less developed countries (LDCs) to liberalise and privatise its electricity industry, Argentina has since moved away from the orthodox market model after consumer prices were frozen by the Government in early 2002 when the national currency was devalued by 70%. Although its reforms were widely praised during the 1990s, the electricity market has undergone a number of interventions, ostensibly to keep consumer prices low and to avert the much-discussed energy ‘crisis’ caused by a dearth of new investment combined with rising demand levels. This paper explores how the economic crisis and its consequences have both enabled and legitimised these policy and institutional amendments, while drawing upon the specifics of the post-neoliberal market ‘re-reforms’ to consider the extent to which the Government appears to be moving away from market-based prescriptions. In addition, this paper contributes to sector-specific understandings of how, despite these changes, neoliberal ideas and assumptions continue to dominate Argentine public policy well beyond the postcrisis era.
Resumo:
In this work, we propose the Seasonal Dynamic Factor Analysis (SeaDFA), an extension of Nonstationary Dynamic Factor Analysis, through which one can deal with dimensionality reduction in vectors of time series in such a way that both common and specific components are extracted. Furthermore, common factors are able to capture not only regular dynamics (stationary or not) but also seasonal ones, by means of the common factors following a multiplicative seasonal VARIMA(p, d, q) × (P, D, Q)s model. Additionally, a bootstrap procedure that does not need a backward representation of the model is proposed to be able to make inference for all the parameters in the model. A bootstrap scheme developed for forecasting includes uncertainty due to parameter estimation, allowing enhanced coverage of forecasting intervals. A challenging application is provided. The new proposed model and a bootstrap scheme are applied to an innovative subject in electricity markets: the computation of long-term point forecasts and prediction intervals of electricity prices. Several appendices with technical details, an illustrative example, and an additional table are available online as Supplementary Materials.