913 resultados para Electrical Lines
Resumo:
The twenty-first century Iowa State Capitol contains state-of-the-art fire protection. Sprinklers and smoke detectors are located in every room and all public hallways are equipped with nearby hydrants. The Des Moines Fire Department is able to fight fires at nearly any height. However, on Monday morning, January 4, 1904, the circumstances were much different. By the beginning of 1904, the Capitol Improvement Commission had been working in the Capitol for about two years. The commissioners were in charge of decorating the public areas of the building, installing the artwork in the public areas, installing a new copper roof, re-gilding the dome, replacing windows, and connecting electrical lines throughout. Electrician H. Frazer had been working that morning in Committee Room Number Five behind the House Chamber, drilling into the walls to run electrical wires and using a candle to light his way. The investigating committee determined that Frazer had left his work area and had neglected to extinguish his candle. The initial fire alarm sounded at approximately 10 a.m. Many citizen volunteers came to help the fire department. Capitol employees and state officials also assisted in fighting the fire, including Governor Albert Cummins. The fire was finally brought under control around 6 p.m., although some newspaper accounts at the time reported that the fire continued smoldering for several days. Crampton Linley was the engineer working with the Capitol Improvement Commission. He was in the building at the time of the fire and was credited with saving the building. Linley crawled through attic areas to close doors separating wings of the Capitol, an action which smothered the flames and brought the fire under control. Sadly, Linley did not live long enough to be recognized for his heroism. The day after the fire, while examining the damage, Linley fell through the ceiling of the House Chamber and died instantly from severe head injuries. The flames had burned through the ceiling and caused much of it to collapse to the floor below, while the lower areas of the building had been damaged by smoke and water. Elmer Garnsey was the artist hired by the Capitol Improvement Commission to decorate the public areas of the building. Therefore, he seemed the logical candidate to be given the additional responsibility of redecorating the areas damaged by the fire. Garnsey had a very different vision for the decoration, which is why the House Chamber, the old Supreme Court Room, and the old Agriculture offices directly below the House Chamber have a design that is very different from the areas of the building untouched by the fire.
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Polymeric insulation is an increasing tendency in projects and maintenance of electrical networks for power distribution and transmission. Electrical power devices (e. g., insulators and surge arresters) developed by using polymeric insulation presents many advantages compared to the prior power components using ceramic insulation, such as: a better performance under high pollution environment; high hydrophobicity; high resistance to mechanical, electrical and chemical stresses. The practice with silicone insulators in polluted environments has shown that the ideal performance is directly related to insulator design and polymer formulation. One of the most common misunderstandings in the design of silicone compounds for insulators is the amount of inorganic load used in their formulation. This paper attempts to clarify how the variation of the inorganic load amount affects physicochemical characteristics of different silicone compounds. The physicochemical evaluation is performed from several measurements, such as: density, hardness, elongation, tensile strength. In addition, the evaluation of the physicochemical structure is carried out using infrared test and scanning electronic microscopy (SEM). The electrical analysis is performed from the electric tracking wheel and erosion test, in agreement with the recommendation of the International Electrotechnical Commission (IEC). (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Mode of access: Internet.
Resumo:
This work presents the study and development of a combined fault location scheme for three-terminal transmission lines using wavelet transforms (WTs). The methodology is based on the low- and high-frequency components of the transient signals originated from fault situations registered in the terminals of a system. By processing these signals and using the WT, it is possible to determine the time of travelling waves of voltages and/or currents from the fault point to the terminals, as well as estimate the fundamental frequency components. A new approach presents a reliable and accurate fault location scheme combining some different solutions. The main idea is to have a decision routine in order to select which method should be used in each situation presented to the algorithm. The combined algorithm was tested for different fault conditions by simulations using the ATP (Alternative Transients Program) software. The results obtained are promising and demonstrate a highly satisfactory degree of accuracy and reliability of the proposed method.
Resumo:
This research presents the development and implementation in a computational routine of algorithms for fault location in multiterminal transmission lines. These algorithms are part of a fault-location system, which is capable of correctly identifying the fault point based on voltage and current phasor quantities, calculated by using measurements of voltage and current signals from intelligent electronic devices, located on the transmission-line terminals. The algorithms have access to the electrical parameters of the transmission lines and to information about the transformers loading and their connection type. This paper also presents the development of phase component models for the power system elements used by the fault-location algorithms.
Resumo:
Thyristor-based onload tap-changing ac voltage stabilizers are cheap and robust. They have replaced most mechanical tap-changers in low voltage applications from 300 VA to 300 M. Nevertheless, this replacement hardily applies to tap-changers associated to transformers feeding medium-voltage lines (typically 69 kV primary, 34.5 kV line, 10 MVA) which need periodical maintenance of contacts and oil. The Electric Power Research Institute (EPRI) has studied the feasibility of this replacement. It detected economical problems derived from the need for series association of thyristors to manage the high voltages involved, and from the current overload developed under line fault. The paper reviews the configurations used in that field and proposes new solutions, using a compensating transformer in the main circuit and multi-winding coils in the commutating circuit, with reduced overload effect and no series association of thyristors, drastically decreasing their number and rating. The stabilizer can be installed at any point of the line and the electronic circuit can be fixed to ground. Subsequent works study and synthesize several commutating circuits in detail.
Resumo:
This work presents the development and implementation of an artificial neural network based algorithm for transmission lines distance protection. This algorithm was developed to be used in any transmission line regardless of its configuration or voltage level. The described ANN-based algorithm does not need any topology adaptation or ANN parameters adjustment when applied to different electrical systems. This feature makes this solution unique since all ANN-based solutions presented until now were developed for particular transmission lines, which means that those solutions cannot be implemented in commercial relays. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Lightning-induced overvoltages have a considerable impact on the power quality of overhead distribution and telecommunications systems, and various models have been developed for the computation of the electromagnetic transients caused by indirect strokes. The most adequate has been shown to be the one proposed by Agrawal et al.; the Rusck model can be visualized as a particular case, as both models are equivalent when the lightning channel is perpendicular to the ground plane. In this paper, an extension of the Rusck model that enables the calculation of lightning-induced transients considering flashes to nearby elevated structures and realistic line configurations is tested against data obtained from both natural lightning and scale model experiments. The latter, performed under controlled conditions, can be used also to verify the validity of other coupling models and relevant codes. The so-called Extended Rusck Model, which is shown to be sufficiently accurate, is applied to the analysis of lightning-induced voltages on lines with a shield wire and/or surge arresters. The investigation conducted indicates that the ratio between the peak values of the voltages induced by typical first and subsequent strokes can be either greater or smaller than the unity, depending on the line configuration.
Resumo:
Conferência: 9th International Symposium on Occupational Safety and Hygiene (SHO) Guimaraes, Portugal - FEB 14-15, 2013
Resumo:
Fault location has been studied deeply for transmission lines due to its importance in power systems. Nowadays the problem of fault location on distribution systems is receiving special attention mainly because of the power quality regulations. In this context, this paper presents an application software developed in Matlabtrade that automatically calculates the location of a fault in a distribution power system, starting from voltages and currents measured at the line terminal and the model of the distribution power system data. The application is based on a N-ary tree structure, which is suitable to be used in this application due to the highly branched and the non- homogeneity nature of the distribution systems, and has been developed for single-phase, two-phase, two-phase-to-ground, and three-phase faults. The implemented application is tested by using fault data in a real electrical distribution power system
Resumo:
Through the history of Electrical Engineering education, vectorial and phasorial diagrams have been used as a fundamental learning tool. At present, computational power has replaced them by long data lists, the result of solving equation systems by means of numerical methods. In this sense, diagrams have been shifted to an academic background and although theoretically explained, they are not used in a practical way within specific examples. This fact may be against the understanding of the complex behavior of the electrical power systems by students. This article proposes a modification of the classical Perrine-Baum diagram construction to allowing both a more practical representation and a better understanding of the behavior of a high-voltage electric line under different levels of load. This modification allows, at the same time, the forecast of the obsolescence of this behavior and line’s loading capacity. Complementary, we evaluate the impact of this tool in the learning process showing comparative undergraduate results during three academic years
Resumo:
We propose an edge detector based on the selection of wellcontrasted pieces of level lines, following the proposal ofDesolneux-Moisan-Morel (DMM) [1]. The DMM edge detectorhas the problem of over-representation, that is, everyedge is detected several times in slightly different positions.In this paper we propose two modifications of the originalDMM edge detector in order to solve this problem. The firstmodification is a post-processing of the output using a generalmethod to select the best representative of a bundle of curves.The second modification is the use of Canny’s edge detectorinstead of the norm of the gradient to build the statistics. Thetwo modifications are independent and can be applied separately.Elementary reasoning and some experiments showthat the best results are obtained when both modifications areapplied together.