979 resultados para Electric conductivity measurement
Resumo:
We generalize the standard linear-response (Kubo) theory to obtain the conductivity of a system that is subject to a quantum measurement of the current. Our approach can be used to specifically elucidate how back-action inherent to quantum measurements affects electronic transport. To illustrate the utility of our general formalism, we calculate the frequency-dependent conductivity of graphene and discuss the effect of measurement-induced decoherence on its value in the dc limit. We are able to resolve an ambiguity related to the parametric dependence of the minimal conductivity.
Resumo:
In this work, the microstructure, thermal and electric conductivity properties of near-zero thermal expansion ZrW2O8/ZrO2 and Al2O3 added ZrW2O8/ZrO2 composites were studied. Both the two composites exhibit very low thermal conductivity and the thermal conductivity decreases slightly as the temperature increases. The electric conductivity of the two composites increases with the increasing of the measurement temperature. The Al2O3 added ZrW2O8/ZrO2 composite has higher thermal and electric conductivity than ZrW2O8/ZrO2 composite. The most important factor which causes the difference of the thermal and electric conductivity of the composites is the porosity. (C) 2008 The Ceramic Society of Japan. All rights reserved.
Resumo:
We have achieved in-situ Si incorporation into cubic boron nitride (c-BN) thin films during ion beam assisted deposition. The effects of silicon incorporation on the composition, structure and electric conductivity of c-BN thin films were investigated by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and electrical measurements. The results suggest that the content of the cubic phase remains stable on the whole with the incorporation of Si up to a concentration of 3.3 at.%, and the higher Si concentrations lead to a gradual change from c-BN to hexagonal boron nitride. It is found that the introduced Si atoms only replace B atoms and combine with N atoms to form Si-N bonds, and no evidence of the existence of Si-B bonds is observed. The resistance of the Si-doped c-BN films gradually decreases with increasing Si concentration, and the resistivity of the c-BN film with 3.3 at.% Si is lowered by two orders of magnitude as compared to undoped samples.
Resumo:
A new microfluidic-based approach to measuring liquid thermal conductivity is developed to address the requirement in many practical applications for measurements using small (microlitre) sample size and integration into a compact device. The approach also gives the possibility of high-throughput testing. A resistance heater and temperature sensor are incorporated into a glass microfluidic chip to allow transmission and detection of a planar thermal wave crossing a thin layer of the sample. The device is designed so that heat transfer is locally one-dimensional during a short initial time period. This allows the detected temperature transient to be separated into two distinct components: a short-time, purely one-dimensional part from which sample thermal conductivity can be determined and a remaining long-time part containing the effects of three-dimensionality and of the finite size of surrounding thermal reservoirs. Identification of the one-dimensional component yields a steady temperature difference from which sample thermal conductivity can be determined. Calibration is required to give correct representation of changing heater resistance, system layer thicknesses and solid material thermal conductivities with temperature. In this preliminary study, methanol/water mixtures are measured at atmospheric pressure over the temperature range 30-50A degrees C. The results show that the device has produced a measurement accuracy of within 2.5% over the range of thermal conductivity and temperature of the tests. A relation between measurement uncertainty and the geometric and thermal properties of the system is derived and this is used to identify ways that error could be further reduced.
Resumo:
In this work we examine, for the first time, the molar conductivity behavior of the deeply supercooled room temperature ionic liquid [C4mim][NTf2] in the temperature, pressure and volume thermodynamic space in terms of density scaling (TVγ)−1 combined with the equation of state (EOS). The exponent γσ determined from the Avramov model analysis is compared with the coefficient obtained from the viscosity studies carried out at moderate temperatures. Therefore, the experimental results presented herein provide the answer to the long-standing question regarding the validity of thermodynamic scaling of ionic liquids over a wide temperature range, i.e. from the normal liquid state to the glass transition point. Finally, we investigate the relationship between the dynamic and thermodynamic properties of [C4mim][NTf2] represented by scaling exponent γ and Grüneisen constant γG, respectively.
Resumo:
Electrical conductivity of the supercooled ionic liquid [C8MIM][NTf2], determined as a function of temperature and pressure, highlights strong differences in its ionic transport behavior between low and high temperature regions. To date, the crossover effect which is very well known for low molecular van der Waals liquids has been rarely described for classical ionic liquids. This finding highlights that the thermal fluctuations could be dominant mechanisms driving the dramatic slowing down of ion motions near Tg. An alternative way to analyze separately low and high temperature dc-conductivity data using a density scaling approach was then proposed. Based on which a common value of the scaling exponent [gamma] = 2.4 was obtained, indicating that the applied density scaling is insensitive to the crossover effect. By comparing the scaling exponent [gamma] reported herein along with literature data for other ionic liquids, it appears that [gamma] decreases by increasing the alkyl chain length on the 1-alkyl-3-methylimidazolium-based ionic liquids. This observation may be related to changes in the interaction between ions in solution driven by an increase in the van der Waals type interaction by increasing the alkyl chain length on the cation. This effect may be related to changes in the ionic liquid nanostructural organization with the alkyl chain length on the cation as previously reported in the literature based on molecular dynamic simulations. In other words, the calculated scaling exponent [gamma] may be then used as a key parameter to probe the interaction and/or self-organizational changes in solution with respect to the ionic liquid structure.
Resumo:
Continuing development of new materials makes systems lighter and stronger permitting more complex systems to provide more functionality and flexibility that demands a more effective evaluation of their structural health. Smart material technology has become an area of increasing interest in this field. The combination of smart materials and artificial neural networks can be used as an excellent tool for pattern recognition, turning their application adequate for monitoring and fault classification of equipment and structures. In order to identify the fault, the neural network must be trained using a set of solutions to its corresponding forward Variational problem. After the training process, the net can successfully solve the inverse variational problem in the context of monitoring and fault detection because of their pattern recognition and interpolation capabilities. The use of structural frequency response function is a fundamental portion of structural dynamic analysis, and it can be extracted from measured electric impedance through the electromechanical interaction of a piezoceramic and a structure. In this paper we use the FRF obtained by a mathematical model (FEM) in order to generate the training data for the neural networks, and the identification of damage can be done by measuring electric impedance, since suitable data normalization correlates FRF and electrical impedance.
Resumo:
Distribution, accumulation and diagenesis of surficial sediments in coastal and continental shelf systems follow complex chains of localized processes and form deposits of great spatial variability. Given the environmental and economic relevance of ocean margins, there is growing need for innovative geophysical exploration methods to characterize seafloor sediments by more than acoustic properties. A newly conceptualized benthic profiling and data processing approach based on controlled source electromagnetic (CSEM) imaging permits to coevally quantify the magnetic susceptibility and the electric conductivity of shallow marine deposits. The two physical properties differ fundamentally insofar as magnetic susceptibility mostly assesses solid particle characteristics such as terrigenous or iron mineral content, redox state and contamination level, while electric conductivity primarily relates to the fluid-filled pore space and detects salinity, porosity and grain-size variations. We develop and validate a layered half-space inversion algorithm for submarine multifrequency CSEM with concentric sensor configuration. Guided by results of modeling, we modified a commercial land CSEM sensor for submarine application, which was mounted into a nonconductive and nonmagnetic bottom-towed sled. This benthic EM profiler Neridis II achieves 25 soundings/second at 3-4 knots over continuous profiles of up to hundred kilometers. Magnetic susceptibility is determined from the 75 Hz in-phase response (90% signal originates from the top 50 cm), while electric conductivity is derived from the 5 kHz out-of-phase (quadrature) component (90% signal from the top 92 cm). Exemplary survey data from the north-west Iberian margin underline the excellent sensitivity, functionality and robustness of the system in littoral (~0-50 m) and neritic (~50-300 m) environments. Susceptibility vs. porosity cross-plots successfully identify known lithofacies units and their transitions. All presently available data indicate an eminent potential of CSEM profiling for assessing the complex distribution of shallow marine surficial sediments and for revealing climatic, hydrodynamic, diagenetic and anthropogenic factors governing their formation.