999 resultados para Electric breakdown


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formation of vapor layers around an electrode immersed in a conducting liquid prior to generation of a plasma discharge is studied using numerical simulations. This study quantifies and explains the effects of the electrode geometry and applied voltage pulses, as well as the electrical and thermal properties of the liquids on the temporal dynamics of the pre-breakdown conditions in the vapor layer. This model agrees well with experimental data, in particular, the time needed to reach the electrical breakdown threshold. Because the time needed for discharge ignition can be accurately predicted from the model, the parameters such as the pulse shape, voltage, and electrode configuration can be optimized under different liquid conditions, which facilitates a faster and more energy-efficient plasma generation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a study on the dependence of electric breakdown discharge properties on electrode geometry and the breakdown field in liquid argon near its boiling point. The measurements were performed with a spherical cathode and a planar anode at distances ranging from 0.1 mm to 10.0 mm. A detailed study of the time evolution of the breakdown volt-ampere characteristics was performed for the first time. It revealed a slow streamer development phase in the discharge. The results of a spectroscopic study of the visible light emission of the breakdowns complement the measurements. The light emission from the initial phase of the discharge is attributed to electro-luminescence of liquid argon following a current of drifting electrons. These results contribute to set benchmarks for breakdown-safe design of ionization detectors, such as Liquid Argon Time Projection Chambers (LAr TPC).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Physics Development Department, Tracerlab, Incorporated, Reactor Monitoring Center."

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Experiments were conducted to measure the ac breakdown strength of epoxy alumina nanocomposites with different filler loadings of 0.1, 1 and 5 wt%. The experiments were performed as per the ASTM D 149 standard on samples of thickness 0.5 mm, 1 mm and 3 mm in order to study the effect of thickness on the ac breakdown strength of epoxy nanocomposites. In the case of epoxy alumina nanocomposites it was observed that the ac breakdown strength was marginally lower for 0.1 wt% and 1 wt% filler loadings and then increased at 5 wt% filler loading as compared to the unfilled epoxy. The Weibull shape parameter (beta) increased with the addition of nanoparticles to epoxy as well as with the increasing sample thickness for all the filler loadings considered. DSC analysis was done to study the material properties at the filler resin interface in order to understand the effect of the filler loading and thereby the influence of the interface on the ac breakdown strength of epoxy nanocomposites. It was also observed that the decrease in ac electric breakdown strength with an increase in sample thickness follows an inverse power-law dependence. In addition, the ac breakdown strength of epoxy silica nanocomposites have also been studied in order to understand the influence of the filler type on the breakdown strength.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The dielectric strength of films made from poly(ethylene terephthalate) (PET) coated with a thin layer of polyaniline (PANI) was studied. The PANI layer was deposited on the PET films by the 'in situ' chemical polymerization method. The PANI layer of the PANI/PET films was undoped in NH4OH 0.1 M solution and re-doped with aqueous HCl solution under different pH values varying from 1 to 10. Electric breakdown measurements were performed by applying a voltage ramp and the results showed a dependence of the dielectric strength on the pH of the doping solution due to the changes in the electrical conductivity of the PANI layer. The dielectric strength of PET/PANI films treated under higher pH conditions showed an electric strength about 30% larger than the PET films, since it leads to a non-conductive PANI layer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polydimethylsiloxane ( PDMS) has become the most widely used silicon-based organic polymer in bio-MEMS/NEMS devices. However, the inherent hydrophobic nature of PDMS hinders its wide applications in bio-MEMS/NEMS for efficient transport of liquids. Electrowetting is a useful tool to reduce the apparent contact angle of partially wetting conductive liquids and has been utilized widely in bio-MEMS/NEMS. Our experimental results show that the thin PDMS membranes exhibit good properties in electrowetting-on-dielectric. The electrical instability phenomenon of droplets was observed in our experiment. The sessile droplet lying on the PDMS membrane will lose its stability with the touch of the wire electrode to make the apparent contact angle change suddenly larger than 35 degrees. Contact mode can protect the dielectric layer from electrical breakdown effectively. Electrical breakdown process of dielectric layer was recorded by a high speed camera. It is found experimentally that a PDMS membrane of 4.8 mu m thick will not be destroyed due to the electric breakdown even at 800 V in the contact mode.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The degradation behaviour of SnO(2)-based varistors (SCNCr) due to current pulses (8/20 mu s) is reported here for the first time in comparison with the ZnO-based commercial varistors (ZnO). Puncturing and/or cracking failures were observed in ZnO-based varistors possessing inferior thermo-mechanical properties in comparison with that found in a SCNCr system free of failures. Both systems presented electric degradation related to the increase in the leakage current and decrease in the electric breakdown field, non-linear coefficient and average value of the potential barrier height. However, it was found that a more severe degradation occurred in the ZnO-based varistors concerning their non-ohmic behaviour, while in the SCNCr system, a strong non-ohmic behaviour remained after the degradation. These results indicate that the degradation in the metal oxide varistors is controlled by a defect diffusion process whose rate depends on the mobility, the concentration of meta-stable defects and the amount of electrically active interfaces. The improved behaviour of the SCNCr system is then inferred to be associated with the higher amount of electrically active interfaces (85%) and to a higher energy necessary to activate the diffusion of the specific defects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

SnO2-based varistors doped with 0.5% cobalt, 0.5% zinc and various tantalum amounts were prepared by the solid-state route. Experimental evidence shows that small quantities of Ta2O5 improve the nonlinear properties of the samples significantly. It was found that samples doped with 0.05 mol% Ta2O5 exhibit the highest density (98.5%), the lowest electric breakdown field (E-b = 1050 V/cm) and the highest coefficient of nonlinearity (alpha = 11.5). The effect of Ta2O5 dopant could be explained by the substitution of Ta5+ by Sn4+. (C) 2004 Elsevier Ltd and Techna S.r.l. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ta2O5 doped SnO2 varistor systems containing 0.5 mol% ZnO and 0.5 mol% Coo were prepared by mixed oxide method. Considering that ZnO and Coo oxides are densification additives only the SnO(2)center dot ZnO center dot CoO ceramics cannot exhibit electrical nonlinearity. A small amount of Ta2O5 improves the nonlinear properties of the samples greatly. The height and width of the defect barriers were calculated. It was found that samples doped with 0.05 mol% Ta2O5 exhibit the highest density (98.5%), the lowest electric breakdown field (E-b = 1100 V/cm) and the highest coefficient of nonlinearity (alpha = 11.5). The effect of Ta2O5 dopant could be explained by the substitution of Ta5+ by Sn4+. A grain-boundary defect barrier model for the SnO(2)center dot ZnO center dot CoO center dot Ta2O5 varistor system was also introduced. (c) 2004 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plasma electrolytic oxidation (PEO) is a coating procedure that utilises anodic oxidation in aqueous electrolytes above the dielectric breakdown voltage to produce oxide coatings that have specific properties. These conditions facilitate oxide formation under localised high temperatures and pressures that originate from short-lived microdischarges at sites over the metal surface and have fast oxide volume expansion. Anodic ZrO2 films were prepared by subjecting metallic zirconium to PEO in acid solutions (H2C 2O4 and H3PO4) using a galvanostatic DC regime. The ZrO2 microstructure was investigated in films that were prepared at different charge densities. During the anodic breakdown, an important change in the amplitude of the voltage oscillations at a specific charge density was observed (i.e., the transition charge density (Q T)). We verified that this transition charge is a monotonic function of both the current density and temperature applied during the anodisation, which indicated that Q T is an intrinsic response of this system. The oxide morphology and microstructure were characterised using SEM and X-ray diffraction experiments (XRD) techniques. X-ray diffraction analysis revealed that the change in voltage oscillation was correlated with oxide microstructure changes during the breakdown process. © 2012 Springer-Verlag Berlin Heidelberg.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of seed addition on the microstructure and non-ohmic properties of the SnO2 + 1%CoO + 0.05%Nb2O5 ceramic-based system was analyzed. Two classes of seeds were prepared: 99% SnO2 + 1%CuO and 99% SnO2 + 1%CoO (mol%); both classes were added to the ceramic-based system in the amount of 1%, 5%, and 10%. The two systems containing 1% of seeds resulted in a larger grain size and a lower breakdown voltage. The addition of 1% copper seeds produces a breakdown voltage (V b) of ∼ 37 V and a leakage current (fic) of 29 μA. On the other hand, the addition of 1% cobalt seeds produced a breakdown voltage of 57 V and a leakage current of 70 μA. Both systems are of great technological interest for low voltage varistor applications, by means of appropriate strategies to reduce the leakage current. Using larger amounts of seeds was not effective since the values of breakdown voltage in both cases are close to a system without seeds. To our knowledge, there are no reports in the literature regarding the use of seeds in the SnO2 system for low voltage applications. A potential barrier model which illustrates the formation of oxygen species (O′2(ads), O′ads, and O″ads) at the expense of clusters near the interface between grains is proposed. © 2012 The American Ceramic Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The degradation behaviour of SnO(2)-based varistors (SCNCr) due to current pulses (8/20 mu s) is reported here for the first time in comparison with the ZnO-based commercial varistors (ZnO). Puncturing and/or cracking failures were observed in ZnO-based varistors possessing inferior thermo-mechanical properties in comparison with that found in a SCNCr system free of failures. Both systems presented electric degradation related to the increase in the leakage current and decrease in the electric breakdown field, non-linear coefficient and average value of the potential barrier height. However, it was found that a more severe degradation occurred in the ZnO-based varistors concerning their non-ohmic behaviour, while in the SCNCr system, a strong non-ohmic behaviour remained after the degradation. These results indicate that the degradation in the metal oxide varistors is controlled by a defect diffusion process whose rate depends on the mobility, the concentration of meta-stable defects and the amount of electrically active interfaces. The improved behaviour of the SCNCr system is then inferred to be associated with the higher amount of electrically active interfaces (85%) and to a higher energy necessary to activate the diffusion of the specific defects.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A simple equation to predict the breakdown voltages for binary mixtures (Vmix) of electronegative gases (SF6, CCl2F2) and buffer gases (N2, N2O, CO2, air) under uniform electric field has been proposed. Values of Vmix evaluated using this equation for mixtures of SF6-N2, SF6-air, SF6-N2O, SF6-CO2 and CCl2F2-N2 over a wide range of pd show an excellent agreement with the experimentally measured data available in the literature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sparking potentials have been measured in nitrogen and dry air between coaxial cylindrical electrodes for values of n = R2/R1 = approximately 1 to 30 (R1 = inner electrode radius, R2 = outer electrode radius) in the presence of crossed uniform magnetic fields. The magnetic flux density was varied from 0 to 3000 Gauss. It has been shown that the minimum sparking potentials in the presence of the crossed magnetic field can be evaluated on the basis of the equivalent pressure concept when the secondary ionization coefficient does not vary appreciably with B/p (B = magnetic flux density, p = gas pressure). The values of secondary ionization coefficients �¿B in nitrogen in crossed fields calculated from measured values of sparking potentials and Townsend ionization coefficients taken from the literature, have been reported. The calculated values of collision frequencies in nitrogen from minimum sparking potentials in crossed fields are found to increase with increasing B/p at constant E/pe (pe = equivalent pressure). Studies on the similarity relationship in crossed fields has shown that the similarity theorem is obeyed in dry air for both polarities of the central electrode in crossed fields.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An analysis of the time-dependent resistive voltage and power deposition during the breakdown phase of pseudo-spark is presented. The voltage and current were measured by specially designed low-inductance capacitive voltage divider and current measuring resistor. The measured waveforms of voltage and current are digitized and processed by a computer program to remove the inductive component, so as to obtain resistive voltage and power deposition. The influence of pressure, cathode geometry and charging voltage of storage capacitors on the electrical properties in the breakdown phase are investigated. The results suggest that the breakdown phase of pseudo-spark consists of three stages. The first stage is mainly hollow cathode discharge. In the second stage, field-enhanced thermionic emission takes place, resulting in a fast voltage drop and sharp rise of discharge current. The third stage of discharge depends simply on the parameters of the discharge circuit.