937 resultados para Elastic moduli
Resumo:
Light weight structures with tailored mechanical properties have evolved beyond regular hexagonal/circular honeycomb topology. For applications which demand anisotropic mechanical properties, elliptical-celled structures offer interesting features. This paper characterizes the anisotropic in-plane elastic response of coated thin elliptical tubes in different array patterns viz, close-packed, diagonal and rectangular patterns under compression. This paper also extends earlier works on elliptical close-packed structure to a more general case of coated tubes. Theoretical framework using thin ring theory provides formulae in terms of geometric and material parameters. These are compared with a series of FE simulations using contact elements. The FE results are presented as graphs to aid in design. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
An accurate method which directly accounts for the interactions between different microcracks is used for analyzing the elastic problem of multiple cracks solids. The effective elastic moduli for randomly oriented cracks and parallel cracks are evaluated for the representative volume element (RVE) with microcracks in infinite media. The numerical results are compared with those from various micromechanics models and experimental data. These results show that the present method is simple and provides a direct and efficient approach to dealing with elastic solids containing multiple cracks.
Resumo:
A theoretical model is presented to investigate the size-dependent elastic moduli of nanostructures with the effects of the surface relaxation surface energy taken into consideration. At nanoscale, due to the large ratios of the surface-to-volume, the surface effects, which include surface relaxation surface energy, etc., can play important roles. Thus, the elastic moduli of nanostructures become surface- and size-dependent. In the research, the three-dimensional continuum model of the nanofilm with the surface effects is investigated. The analytical expressions of five nonzero elastic moduli of the nanofilm are derived, and then the dependence of the elastic moduli is discussed on the surface effects and the characteristic dimensions of nanofilms.
Resumo:
An embedded cell model is presented to obtain the effective elastic moduli for three-dimensional two-phase composites which is an exact analytic formula without any simplified approximation and can be expressed in an explicit form. For the different cells such as spherical inclusions and cracks surrounded by sphere and oblate ellipsoidal matrix, the effective elastic moduli are evaluated and the results are compared with those from various micromechanics models. These results show that the present model is direct, simple and efficient to deal with three-dimensional tyro-phase composites.
Resumo:
A theoretical model is presented to investigate the size-dependent elastic moduli of nanostructures with the effects of the surface relaxation surface energy taken into consideration. At nanoscale, due to the large ratios of the surface-to-volume, the surface effects, which include surface relaxation surface energy, etc., can play important roles. Thus, the elastic moduli of nanostructures become surface- and size-dependent. In the research, the three-dimensional continuum model of the nanofilm with the surface effects is investigated. The analytical expressions of five nonzero elastic moduli of the nanofilm are derived, and then the dependence of the elastic moduli is discussed on the surface effects and the characteristic dimensions of nanofilms.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Dynamical Elastic Moduli of the Ti-13Nb-13Zr biomaterial alloy were obtained using the mechanical spectroscopy technique. The sample with heat treatment at 1170K for 30 minutes and water quenched with subsequent aging treatment at 670 K for 3 hours (TNZ + WQ + 670 K/3 h), was characterized through decay of free oscillations of the sample in the flexural vibration mode. The spectra of anelastic relaxation (internal friction and frequency) in the temperature range from 300 K to 625 K not revealed the presence of relaxation process. As shown in the literature, the hcp structure usually does not exhibit any relaxation due to the symmetry of the sites in the crystalline lattice, but if there is some relaxation, this only occurs in special cases such as low concentration of zirconium or saturation of the stoichiometric ratio of oxygen for zirconium. Dynamical elastic modulus obtained for TNZ + WQ + 670 K/3 h alloy was 87 GPa at room temperature, which is higher than the value for Ti-13Nb-13Zr alloy (64 GPa) of the literature. This increment may be related to the change of the proportion of α and β phases. Besides that, the presence of precipitates in the alloy after aging treatment hardens the material and reduces its ductility.
Resumo:
Compressional (Vp) and shear (Vs) wave velocities have been measured to 10 kb in 32 cores of basalt from 14 Pacific sites of the Deep Sea Drilling Project. Both Vp and V s show wide ranges (3.70 to 6.38 km/sec for Vp and 1.77 to 3.40 km/sec for V s at 0.5 kb) which are linearly related to density and sea floor age, confirming earlier findings by Christensen and Salisbury of decreasing velocity with progressive submarine weathering based on studies of basalts from five sites in the Atlantic. Combined Pacific and Atlantic data give rates of decreasing velocity of -1.89 and -1.35 km/sec per 100 my for Vp and Vs respectively. New analyses of oceanic seismic refraction data indicate a decrease in layer 2 velocities with age similar to that observed in the laboratory, suggesting that weathering penetrates to several hundred meters in many regions and is largely responsible for the extreme range and variability of layer 2 refraction velocities.
Resumo:
"Project No. 7531, Task No. 73521."
Resumo:
Many biological materials are known to be anisotropic. In particular, microstructural components of biological materials may grow in a preferred direction, giving rise to anisotropy in the microstructure. Nanoindentation has been shown to be an effective technique for determining the mechanical properties of microstructures as small as a few microns. However, the effects of anisotropy on the properties measured by nanoindentation have not been fully addressed. This study presents a method to account for the effects of anisotropy on elastic properties measured by nanoindentation. This method is used to correlate elastic properties determined from earlier nanoindentation experiments and from earlier ultrasonic velocity measurements in human tibial cortical bone. Also presented is a procedure to determine anisotropic elastic moduli from indentation measurements in multiple directions. © 2001 John Wiley & Sons, Inc. J Biomed Mater Res.
Resumo:
The elastic properties of sodium borovanadate glasses have been studied over a wide range of composition using ultrasonic measurements. It is found that variation of different elastic moduli is very similar in any given series of composition. The bulk and shear moduli show a monotonic variation with the covalent bond energy densities calculated from the proposed structural model for these glasses. The bulk moduli also vary as a negative power function of the mean atomic volume. The Debye temperature varies linearly with the glass transition temperature. The implications of the observed behavior have been discussed.
Resumo:
Elastic properties of lead phosphomolybdate [PbO-1bMoO3-1bP2O5] glasses have been investigated using ultrasonic velocity measurements at 10MHz. The composition dependence of elastic moduli, Poisson's ratio and the Debye temperature are found to be consistent with a structural model proposed earlier. According to this model lead acts both as a network former and as a network modifier in different composition regimes. It is suggested that the incorporation of lead into the network is accompanied by the conversion of three-connected [Image ] tetrahedra into four-connected Image tetrahedra in the network. lead; phosphorus; molybdenum
Resumo:
Elastic properties of Li2O-PbO-B2O3 glasses have been investigated using sound velocity measurements at 10 MHz. Four series of glasses have been investigated with different concentrations of Li2O, PbO and B2O3. The variations of molar volume have been examined for the influences of Li2O and PbO. The elastic moduli reveal trends in their compositional dependence. The bulk and shear modulus increases monotonically with increase in the concentration of tetrahedral boron which increases network dimensionality. The variation of bulk moduli has also been correlated to the variation in energy densities. The Poisson's ratio found to be insensitive to the concentration of tetrahedral boron in the structure. The experimental Debye temperatures are in good agreement with the expected theoretical values. Experimental observations have been examined in view, the presence of borate network and the possibility of non-negligible participation of lead in network formation. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Ultrasonic velocities at 10 MHz have been measured in two series of lithium, sodium, and potassium phosphomolybdate glasses with two fixed P2O5 concentrations. Elastic moduli, Poisson's ratio, and Debye temperature have been calculated. The composition dependence of most of the properties of lithium glasses exhibits a trend opposite to that of potassium glasses. Properties of sodium glasses lie between the other two alkali systems. Alkali oxide modification is suggested to be accompanied by ring reformation in lithium and sodium glasses. Ring size effects have been shown to account for all of the composition dependence.
Resumo:
Elastic properties of potassium and lead phosphotungstate glasses have been investigated using ultrasonic velocity measurements. The composition dependence of elastic moduli in WO3-K2O-P2O5 glasses suggests that at low alkali oxide concentrations the atomic ring size increases by network modification, which results in the decrease of elastic moduli. In the highly modified regime, due to the presence of coulombic interaction, the rate of decrease of elastic moduli is reduced. In the WO3-PbO-P2O5 glasses the behaviour of elastic moduli suggests that PbO behaves both as a network former and network modifier. The incorporation of PbO into the network is quantitatively determined by the concentration of P2O5 in the system. The results are consistent with the structural model proposed earlier, based on characterization studies.