11 resultados para Elastic moduli

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some aspects of wave propagation in thin elastic shells are considered. The governing equations are derived by a method which makes their relationship to the exact equations of linear elasticity quite clear. Finite wave propagation speeds are ensured by the inclusion of the appropriate physical effects.

The problem of a constant pressure front moving with constant velocity along a semi-infinite circular cylindrical shell is studied. The behavior of the solution immediately under the leading wave is found, as well as the short time solution behind the characteristic wavefronts. The main long time disturbance is found to travel with the velocity of very long longitudinal waves in a bar and an expression for this part of the solution is given.

When a constant moment is applied to the lip of an open spherical shell, there is an interesting effect due to the focusing of the waves. This phenomenon is studied and an expression is derived for the wavefront behavior for the first passage of the leading wave and its first reflection.

For the two problems mentioned, the method used involves reducing the governing partial differential equations to ordinary differential equations by means of a Laplace transform in time. The information sought is then extracted by doing the appropriate asymptotic expansion with the Laplace variable as parameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have measured inclusive electron-scattering cross sections for targets of ^(4)He, C, Al, Fe, and Au, for kinematics spanning the quasi-elastic peak, with squared, four­ momentum transfers (q^2) between 0.23 and 2.89 (GeV/c)^2. Additional data were measured for Fe with q^2's up to 3.69 (GeV/c)^2 These cross sections were analyzed for the y-scaling behavior expected from a simple, impulse-approximation model, and are found to approach a scaling limit at the highest q^2's. The q^2 approach to scaling is compared with a calculation for infinite nuclear matter, and relationships between the scaling function and nucleon momentum distributions are discussed. Deviations from perfect scaling are used to set limits on possible changes in the size of nucleons inside the nucleus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents two different forms of the Born approximations for acoustic and elastic wavefields and discusses their application to the inversion of seismic data. The Born approximation is valid for small amplitude heterogeneities superimposed over a slowly varying background. The first method is related to frequency-wavenumber migration methods. It is shown to properly recover two independent acoustic parameters within the bandpass of the source time function of the experiment for contrasts of about 5 percent from data generated using an exact theory for flat interfaces. The independent determination of two parameters is shown to depend on the angle coverage of the medium. For surface data, the impedance profile is well recovered.

The second method explored is mathematically similar to iterative tomographic methods recently introduced in the geophysical literature. Its basis is an integral relation between the scattered wavefield and the medium parameters obtained after applying a far-field approximation to the first-order Born approximation. The Davidon-Fletcher-Powell algorithm is used since it converges faster than the steepest descent method. It consists essentially of successive backprojections of the recorded wavefield, with angular and propagation weighing coefficients for density and bulk modulus. After each backprojection, the forward problem is computed and the residual evaluated. Each backprojection is similar to a before-stack Kirchhoff migration and is therefore readily applicable to seismic data. Several examples of reconstruction for simple point scatterer models are performed. Recovery of the amplitudes of the anomalies are improved with successive iterations. Iterations also improve the sharpness of the images.

The elastic Born approximation, with the addition of a far-field approximation is shown to correspond physically to a sum of WKBJ-asymptotic scattered rays. Four types of scattered rays enter in the sum, corresponding to P-P, P-S, S-P and S-S pairs of incident-scattered rays. Incident rays propagate in the background medium, interacting only once with the scatterers. Scattered rays propagate as if in the background medium, with no interaction with the scatterers. An example of P-wave impedance inversion is performed on a VSP data set consisting of three offsets recorded in two wells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report measurements of the proton form factors, G^p_E and G^p_M, extracted from elastic electron scattering in the range 1 ≤ Q^2 ≤ 3 (GeV/c)^2 with uncertainties of <15% in G^p_E and <3% in G^p_M. The results for G^p_E are somewhat larger than indicated by most theoretical parameterizations. The ratio of Pauli and Dirac form factors, Q^2(F^p_2/F^p_1), is lower in value and demonstrates less Q^2 dependence than these parameterizations have indicated. Comparisons are made to theoretical models, including those based on perturbative QCD, vector-meson dominance, QCD sum rules, and diquark constituents to the proton. A global extraction of the form factors, including previous elastic scattering measurements, is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I: The dynamic response of an elastic half space to an explosion in a buried spherical cavity is investigated by two methods. The first is implicit, and the final expressions for the displacements at the free surface are given as a series of spherical wave functions whose coefficients are solutions of an infinite set of linear equations. The second method is based on Schwarz's technique to solve boundary value problems, and leads to an iterative solution, starting with the known expression for the point source in a half space as first term. The iterative series is transformed into a system of two integral equations, and into an equivalent set of linear equations. In this way, a dual interpretation of the physical phenomena is achieved. The systems are treated numerically and the Rayleigh wave part of the displacements is given in the frequency domain. Several comparisons with simpler cases are analyzed to show the effect of the cavity radius-depth ratio on the spectra of the displacements.

Part II: A high speed, large capacity, hypocenter location program has been written for an IBM 7094 computer. Important modifications to the standard method of least squares have been incorporated in it. Among them are a new way to obtain the depth of shocks from the normal equations, and the computation of variable travel times for the local shocks in order to account automatically for crustal variations. The multiregional travel times, largely based upon the investigations of the United States Geological Survey, are confronted with actual traverses to test their validity.

It is shown that several crustal phases provide control enough to obtain good solutions in depth for nuclear explosions, though not all the recording stations are in the region where crustal corrections are considered. The use of the European travel times, to locate the French nuclear explosion of May 1962 in the Sahara, proved to be more adequate than previous work.

A simpler program, with manual crustal corrections, is used to process the Kern County series of aftershocks, and a clearer picture of tectonic mechanism of the White Wolf fault is obtained.

Shocks in the California region are processed automatically and statistical frequency-depth and energy depth curves are discussed in relation to the tectonics of the area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

̄pp backward elastic scattering has been measured for the cos θcm region between – 1.00 and – 0.88 and for the incident ̄p laboratory momentum region between 0.70 and 2.37 GeV/c. These measurements, done in intervals of approximately 0.1 GeV/c, have been performed at the Alternating Gradient Synchrotron at Brookhaven National Laboratory during the winter of 1968. The measured differential cross sections, binned in cos θcm intervals of 0.02, have statistical errors of about 10%. Backward dipping exists below 0.95 GeV/c and backward peaking above 0.95 GeV/c. The 180˚ differential cross section extrapolated from our data shows a sharp dip centered at 0.95 GeV/c and a broad hump centered near 1.4 GeV/c. Our data have been interpreted in terms of resonance effects and in terms of diffraction dominance effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of two channels NN and NN*, coupled through unitarity, is studied to see whether sizable peaks can be produced in elastic nucleon-nucleon scattering due to the opening of a strongly coupled inelastic channel. One-pion-exchange (OPE) interactions are calculated to estimate the NN*→NN* and NN→NN* amplitudes. The OPE production amplitudes are used as the sole dynamical input to drive the multichannel ND-1 equations in the determinental approximation, and the effect on the J = 2+ (1D2) elastic NN scattering amplitude is studied as the width of the unstable N* and strength of coupling to the inelastic channel are varied. A cusp-type enhancement appears in the NN channel near the NN* threshold but for the known value of the N* width the cusp is so “wooly” that any resulting elastic peak is likely to be too broad and diminished in height to be experimentally prominent. A brief survey of current experimental knowledge of the real part of the 1D2 NN phase shift near the NN* threshold is given, and the values are found to be much smaller than the nearly “resonant” phase shifts predicted by the coupled channel model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem motivating this investigation is that of pure axisymmetric torsion of an elastic shell of revolution. The analysis is carried out within the framework of the three-dimensional linear theory of elastic equilibrium for homogeneous, isotropic solids. The objective is the rigorous estimation of errors involved in the use of approximations based on thin shell theory.

The underlying boundary value problem is one of Neumann type for a second order elliptic operator. A systematic procedure for constructing pointwise estimates for the solution and its first derivatives is given for a general class of second-order elliptic boundary-value problems which includes the torsion problem as a special case.

The method used here rests on the construction of “energy inequalities” and on the subsequent deduction of pointwise estimates from the energy inequalities. This method removes certain drawbacks characteristic of pointwise estimates derived in some investigations of related areas.

Special interest is directed towards thin shells of constant thickness. The method enables us to estimate the error involved in a stress analysis in which the exact solution is replaced by an approximate one, and thus provides us with a means of assessing the quality of approximate solutions for axisymmetric torsion of thin shells.

Finally, the results of the present study are applied to the stress analysis of a circular cylindrical shell, and the quality of stress estimates derived here and those from a previous related publication are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large plane deformations of thin elastic sheets of neo-Hookean material are considered and a method of successive substitutions is developed to solve problems within the two-dimensional theory of finite plane stress. The first approximation is determined by linear boundary value problems on two harmonic functions, and it is approached asymptotically at very large extensions in the plane of the sheet. The second and higher approximations are obtained by solving Poisson equations. The method requires modification when the membrane has a traction-free edge.

Several problems are treated involving infinite sheets under uniform biaxial stretching at infinity. First approximations are obtained when a circular or elliptic inclusion is present and when the sheet has a circular or elliptic hole, including the limiting cases of a line inclusion and a straight crack or slit. Good agreement with exact solutions is found for circularly symmetric deformations. Other examples discuss the stretching of a short wide strip, the deformation near a boundary corner which is traction-free, and the application of a concentrated load to a boundary point.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface mass loads come in many different varieties, including the oceans, atmosphere, rivers, lakes, glaciers, ice caps, and snow fields. The loads migrate over Earth's surface on time scales that range from less than a day to many thousand years. The weights of the shifting loads exert normal forces on Earth's surface. Since the Earth is not perfectly rigid, the applied pressure deforms the shape of the solid Earth in a manner controlled by the material properties of Earth's interior. One of the most prominent types of surface mass loading, ocean tidal loading (OTL), comes from the periodic rise and fall in sea-surface height due to the gravitational influence of celestial objects, such as the moon and sun. Depending on geographic location, the surface displacements induced by OTL typically range from millimeters to several centimeters in amplitude, which may be inferred from Global Navigation and Satellite System (GNSS) measurements with sub-millimeter precision. Spatiotemporal characteristics of observed OTL-induced surface displacements may therefore be exploited to probe Earth structure. In this thesis, I present descriptions of contemporary observational and modeling techniques used to explore Earth's deformation response to OTL and other varieties of surface mass loading. With the aim to extract information about Earth's density and elastic structure from observations of the response to OTL, I investigate the sensitivity of OTL-induced surface displacements to perturbations in the material structure. As a case study, I compute and compare the observed and predicted OTL-induced surface displacements for a network of GNSS receivers across South America. The residuals in three distinct and dominant tidal bands are sub-millimeter in amplitude, indicating that modern ocean-tide and elastic-Earth models well predict the observed displacement response in that region. Nevertheless, the sub-millimeter residuals exhibit regional spatial coherency that cannot be explained entirely by random observational uncertainties and that suggests deficiencies in the forward-model assumptions. In particular, the discrepancies may reveal sensitivities to deviations from spherically symmetric, non-rotating, elastic, and isotropic (SNREI) Earth structure due to the presence of the South American craton.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the behavior of granular crystals subjected to impact loading that creates plastic deformation at the contacts between constituent particles. Granular crystals are highly periodic arrangements of spherical particles, arranged into densely packed structures resembling crystals. This special class of granular materials has been shown to have unique dynamics with suggested applications in impact protection. However, previous work has focused on very low amplitude impacts where every contact point can be described using the Hertzian contact law, valid only for purely elastic deformation. In this thesis, we extend previous investigation of the dynamics of granular crystals to significantly higher impact energies more suitable for the majority of applications. Additionally, we demonstrate new properties specific to elastic-plastic granular crystals and discuss their potential applications as well. We first develop a new contact law to describe the interaction between particles for large amplitude compression of elastic-plastic spherical particles including a formulation for strain-rate dependent plasticity. We numerically and experimentally demonstrate the applicability of this contact law to a variety of materials typically used in granular crystals. We then extend our investigation to one-dimensional chains of elastic-plastic particles, including chains of alternating dissimilar materials. We show that, using the new elastic-plastic contact law, we can predict the speed at which impact waves with plastic dissipation propagate based on the material properties of the constituent particles. Finally, we experimentally and numerically investigate the dynamics of two-dimensional and three-dimensional granular crystals with elastic-plastic contacts. We first show that the predicted wave speeds for 1D granular crystals can be extended to 2D and 3D materials. We then investigate the behavior of waves propagating across oblique interfaces of dissimilar particles. We show that the character of the refracted wave can be predicted using an analog to Snell's law for elastic-plastic granular crystals and ultimately show how it can be used to design impact guiding "lenses" for mitigation applications.