968 resultados para Effect Analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An action is typically composed of different parts of the object moving in particular sequences. The presence of different motions (represented as a 1D histogram) has been used in the traditional bag-of-words (BoW) approach for recognizing actions. However the interactions among the motions also form a crucial part of an action. Different object-parts have varying degrees of interactions with the other parts during an action cycle. It is these interactions we want to quantify in order to bring in additional information about the actions. In this paper we propose a causality based approach for quantifying the interactions to aid action classification. Granger causality is used to compute the cause and effect relationships for pairs of motion trajectories of a video. A 2D histogram descriptor for the video is constructed using these pairwise measures. Our proposed method of obtaining pairwise measures for videos is also applicable for large datasets. We have conducted experiments on challenging action recognition databases such as HMDB51 and UCF50 and shown that our causality descriptor helps in encoding additional information regarding the actions and performs on par with the state-of-the art approaches. Due to the complementary nature, a further increase in performance can be observed by combining our approach with state-of-the-art approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To study working mechanism of super-resolution near-field structure (super-RENS) optical disk from a far-field optics view is very necessary because of the actual far-field writing/readout process in the optical disk system. A Gaussian diffraction model based on Fresnel-Kirchhoff diffraction theory of PtOx-type super-RENS has been set up in this Letter. The relationship between micro-structural deformation (change of bubble structure and refractive index profile) with far-field optical response of PtOx thin film has been studied with it in detail. The simulation results are in good agreement with the experimental results reported in literatures with a designed configuration. These results may provide more quantitative information for better understanding of the working mechanism of metal-oxide-type super-RENS. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional Failure Mode and Effect Analysis (FMEA) adopts the Risk Priority Number (RPN) ranking model to evaluate failure risks, to rank failures, as well as to prioritize actions. Although this approach is simple, it suffers from several shortcomings. In this paper, we investigate a number of fuzzy inference techniques for determining the RPN scores, in an attempt to overcome the weaknesses associated with the traditional RPN model. The main objective is to examine the possibility of using fuzzy rule interpolation and reduction techniques to design new fuzzy RPN models. The performance of the fuzzy RPN models is evaluated using a real-world case study pertaining to the test handler process in a semiconductor manufacturing plant. The FMEA procedure for the test handler is performed, and a fuzzy RPN model is developed. In addition, improvement to the fuzzy RPN model is proposed by refining the weights of the fuzzy production rules, hence a new weighted fuzzy RPN model. The ability of the weighted fuzzy RPN model in failure risk evaluation with a reduced rule base is also demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Failure Mode and Effect Analysis (FMEA) is a popular safety and reliability analysis methodology for examining potential failure modes of products, process, designs, or services, in a wide range of industries. Despite its popularity, there are a number of limitations of FMEA, and two highlighted issues are the bulky FMEA form and its intricacy of use. To overcome these shortcomings, we introduce the idea of visualisation pertaining to the failure modes or control actions in FMEA. A visualisation model with an incremental learning feature, i.e., the evolving tree (ETree), is adopted to allow the failure modes or control actions in FMEA to be clustered and visualized. The failure modes or control actions are grouped and visualized with consideration of their Severity, Occurrence, and Detection scores. Our proposed approach allows the failure modes or control actions to be mapped into a tree structure for visualisation. The devised approach is evaluated with a benchmark problem. The experiments show that the control actions of FMEA can be visualised through the tree structure, which provides a quick and easily understandable platform of the FMEA spreadsheet to facilitate decision making tasks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Failure mode and effect analysis (FMEA) is a popular safety and reliability analysis tool in examining potential failures of products, process, designs, or services, in a wide range of industries. While FMEA is a popular tool, the limitations of the traditional Risk Priority Number (RPN) model in FMEA have been highlighted in the literature. Even though many alternatives to the traditional RPN model have been proposed, there are not many investigations on the use of clustering techniques in FMEA. The main aim of this paper was to examine the use of a new Euclidean distance-based similarity measure and an incremental-learning clustering model, i.e., fuzzy adaptive resonance theory neural network, for similarity analysis and clustering of failure modes in FMEA; therefore, allowing the failure modes to be analyzed, visualized, and clustered. In this paper, the concept of a risk interval encompassing a group of failure modes is investigated. Besides that, a new approach to analyze risk ordering of different failure groups is introduced. These proposed methods are evaluated using a case study related to the edible bird nest industry in Sarawak, Malaysia. In short, the contributions of this paper are threefold: (1) a new Euclidean distance-based similarity measure, (2) a new risk interval measure for a group of failure modes, and (3) a new analysis of risk ordering of different failure groups. © 2014 The Natural Computing Applications Forum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new Fuzzy Inference System (FIS)-based Risk Priority Number (RPN) model for the prioritization of failures in Failure Mode and Effect Analysis (FMEA). In FMEA, the monotonicity property of the RPN scores is important. To maintain the monotonicity property of an FIS-based RPN model, a complete and monotonically-ordered fuzzy rule base is necessary. However, it is impractical to gather all (potentially a large number of) fuzzy rules from FMEA users. In this paper, we introduce a new two-stage approach to reduce the number of fuzzy rules that needs to be gathered, and to satisfy the monotonicity property. In stage-1, a Genetic Algorithm (GA) is used to search for a small set of fuzzy rules to be gathered from FMEA users. In stage-2, the remaining fuzzy rules are deduced approximately by a monotonicity-preserving similarity reasoning scheme. The monotonicity property is exploited as additional qualitative information for constructing the FIS-based RPN model. To assess the effectiveness of the proposed approach, a real case study with information collected from a semiconductor manufacturing plant is conducted. The outcomes indicate that the proposed approach is effective in developing an FIS-based RPN model with only a small set of fuzzy rules, which is able to satisfy the monotonicity property for prioritization of failures in FMEA.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the publication of the quality guideline ICH Q9 "Quality Risk Management" by the International Conference on Harmonization, risk management has already become a standard requirement during the life cycle of a pharmaceutical product. Failure mode and effect analysis (FMEA) is a powerful risk analysis tool that has been used for decades in mechanical and electrical industries. However, the adaptation of the FMEA methodology to biopharmaceutical processes brings about some difficulties. The proposal presented here is intended to serve as a brief but nevertheless comprehensive and detailed guideline on how to conduct a biopharmaceutical process FMEA. It includes a detailed 1-to-10-scale FMEA rating table for occurrence, severity, and detectability of failures that has been especially designed for typical biopharmaceutical processes. The application for such a biopharmaceutical process FMEA is widespread. It can be useful whenever a biopharmaceutical manufacturing process is developed or scaled-up, or when it is transferred to a different manufacturing site. It may also be conducted during substantial optimization of an existing process or the development of a second-generation process. According to their resulting risk ratings, process parameters can be ranked for importance and important variables for process development, characterization, or validation can be identified. LAY ABSTRACT: Health authorities around the world ask pharmaceutical companies to manage risk during development and manufacturing of pharmaceuticals. The so-called failure mode and effect analysis (FMEA) is an established risk analysis tool that has been used for decades in mechanical and electrical industries. However, the adaptation of the FMEA methodology to pharmaceutical processes that use modern biotechnology (biopharmaceutical processes) brings about some difficulties, because those biopharmaceutical processes differ from processes in mechanical and electrical industries. The proposal presented here explains how a biopharmaceutical process FMEA can be conducted. It includes a detailed 1-to-10-scale FMEA rating table for occurrence, severity, and detectability of failures that has been especially designed for typical biopharmaceutical processes. With the help of this guideline, different details of the manufacturing process can be ranked according to their potential risks, and this can help pharmaceutical companies to identify aspects with high potential risks and to react accordingly to improve the safety of medicines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Formal methods have significant benefits for developing safety critical systems, in that they allow for correctness proofs, model checking safety and liveness properties, deadlock checking, etc. However, formal methods do not scale very well and demand specialist skills, when developing real-world systems. For these reasons, development and analysis of large-scale safety critical systems will require effective integration of formal and informal methods. In this paper, we use such an integrative approach to automate Failure Modes and Effects Analysis (FMEA), a widely used system safety analysis technique, using a high-level graphical modelling notation (Behavior Trees) and model checking. We inject component failure modes into the Behavior Trees and translate the resulting Behavior Trees to SAL code. This enables us to model check if the system in the presence of these faults satisfies its safety properties, specified by temporal logic formulas. The benefit of this process is tool support that automates the tedious and error-prone aspects of FMEA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Failure mode and effect analysis (FMEA) is a popular safety and reliability analysis tool in examining potential failures of products, process, designs, or services, in a wide range of industries. While FMEA is a popular tool, the limitations of the traditional Risk Priority Number (RPN) model in FMEA have been highlighted in the literature. Even though many alternatives to the traditional RPN model have been proposed, there are not many investigations on the use of clustering techniques in FMEA. The main aim of this paper was to examine the use of a new Euclidean distance-based similarity measure and an incremental-learning clustering model, i.e., fuzzy adaptive resonance theory neural network, for similarity analysis and clustering of failure modes in FMEA; therefore, allowing the failure modes to be analyzed, visualized, and clustered. In this paper, the concept of a risk interval encompassing a group of failure modes is investigated. Besides that, a new approach to analyze risk ordering of different failure groups is introduced. These proposed methods are evaluated using a case study related to the edible bird nest industry in Sarawak, Malaysia. In short, the contributions of this paper are threefold: (1) a new Euclidean distance-based similarity measure, (2) a new risk interval measure for a group of failure modes, and (3) a new analysis of risk ordering of different failure groups.