954 resultados para Educational robot
Resumo:
This paper analyzes the learning experiences and opinions from a group of undergraduate students in a course about Robotics. The contents of this course were taught as a set of seminars. In each seminar, the student learned interdisciplinary knowledge of computer science, control engineering, electronics and other fields related to Robotics. The aim of this course is that the students are able to design and implement their own and custom robotic solution for a series of tests planned by the teachers. These tests measure the behavior and mechatronic features of the students' robots. Finally, the students' robots are confronted with some competitions. In this paper, the low-cost robotic architecture used by the students, the contents of the course, the tests to compare the solutions of students and the opinion of them are amply discussed.
Resumo:
Este artículo analiza diferentes experiencias docentes que tienen como finalidad el aprendizaje de la robótica en el mundo universitario. Estas experiencias se plasman en el desarrollo de varios cursos y asignaturas sobre robótica que se imparten en la Universidad de Alicante. Para el desarrollo de estos cursos, los autores han empleado varias plataformas educativas, algunas de implementación propia, otras de libre distribución y código abierto. El objetivo de estos cursos es enseñar el diseño e implementación de soluciones robóticas a diversos problemas que van desde el control, programación y manipulación de brazos robots de ámbito industrial hasta la construcción y/o programación de mini-robots con carácter educativo. Por un lado, se emplean herramientas didácticas de última generación como simuladores y laboratorios virtuales que flexibilizan el uso de brazos robots y, por otro lado, se hace uso de competiciones y concursos para motivar al alumno haciendo que ponga en práctica las destrezas aprendidas, mediante la construcción y programación de mini-robots de bajo coste.
Resumo:
This paper describes Electronic Blocks, a new robot construction element designed to allow children as young as age three to build and program robotic structures. The Electronic Blocks encapsulate input, output and logic concepts in tangible elements that young children can use to create a wide variety of physical agents. The children are able to determine the behavior of these agents by the choice of blocks and the manner in which they are connected. The Electronic Blocks allow children without any knowledge of mechanical design or computer programming to create and control physically embodied robots. They facilitate the development of technological capability by enabling children to design, construct, explore and evaluate dynamic robotics systems. A study of four and five year-old children using the Electronic Blocks has demonstrated that the interface is well suited to young children. The complexity of the implementation is hidden from the children, leaving the children free to autonomously explore the functionality of the blocks. As a consequence, children are free to move their focus beyond the technology. Instead they are free to focus on the construction process, and to work on goals related to the creation of robotic behaviors and interactions. As a resource for robot building, the blocks have proved to be effective in encouraging children to create robot structures, allowing children to design and program robot behaviors.
Resumo:
Tese de mestrado, Educação (Tecnologias de Informação e Comunicação e Educação), Universidade de Lisboa, Instituto de Educação, 2010
Resumo:
This research work deals with the problem of modeling and design of low level speed controller for the mobile robot PRIM. The main objective is to develop an effective educational tool. On one hand, the interests in using the open mobile platform PRIM consist in integrating several highly related subjects to the automatic control theory in an educational context, by embracing the subjects of communications, signal processing, sensor fusion and hardware design, amongst others. On the other hand, the idea is to implement useful navigation strategies such that the robot can be served as a mobile multimedia information point. It is in this context, when navigation strategies are oriented to goal achievement, that a local model predictive control is attained. Hence, such studies are presented as a very interesting control strategy in order to develop the future capabilities of the system
Resumo:
This paper is focused on the robot mobile platform PRIM (platform robot information multimedia). This robot has been made in order to cover two main needs of our group, on one hand the need for a full open mobile robotic platform that is very useful in fulfilling the teaching and research activity of our school community, and on the other hand with the idea of introducing an ethical product which would be useful as mobile multimedia information point as a service tool. This paper introduces exactly how the system is made up and explains just what the philosophy is behind this work. The navigation strategies and sensor fusion, where machine vision system is the most important one, are oriented towards goal achievement and are the key to the behaviour of the robot
Resumo:
This paper presents the use of a mobile robot platform as an innovative educational tool in order to promote and integrate different curriculum knowledge. Hence, it is presented the acquired experience within a summer course named ldquoapplied mobile roboticsrdquo. The main aim of the course is to integrate different subjects as electronics, programming, architecture, perception systems, communications, control and trajectory planning by using the educational open mobile robot platform PRIM. The summer course is addressed to a wide range of student profiles. However, it is of special interests to the students of electrical and computer engineering around their final academic year. The summer course consists of the theoretical and laboratory sessions, related to the following topics: design & programming of electronic devices, modelling and control systems, trajectory planning and control, and computer vision systems. Therefore, the clues for achieving a renewed path of progress in robotics are the integration of several knowledgeable fields, such as computing, communications, and control sciences, in order to perform a higher level reasoning and use decision tools with strong theoretical base
Resumo:
Mobile robots provide a versatile platform for research, however they can also provide an interesting educational platform for public exhibition at museums. In general museums require exhibits that are both eye catching and exciting to the public whilst requiring a minimum of maintenance time from museum technicians. In many cases it is simply not possible to continuously change batteries and some method of supplying continous power is required. A powered flooring system is described that is capable of providing power continuously to a group of robots. Three different museum exhibit applications are described. All three robot exhibits are of a similar basic design although the exhibits are very different in appearance and behaviour. The durability and versatility of the robots also makes them extremely good candidates for long duration experiments such as those required by evolutionary robotics.
Resumo:
Severe disabled children have little chance of environmental and social exploration and discovery, and due this lack of interaction and independency, it may lead to an idea that they are unable to do anything by themselves. This idea is called learned helplessness and is very negative for the child cognitive development and social development as well. With this entire situation it is very likely that the self-steam and mood of this child. Trying to help these children on this situation, educational robotics can offer and aid, once it can give them a certain degree of independency in exploration of environment. The system developed in this work allows the child to transmit the commands to a robot. Sensors placed on the child's body can obtain information from head movement or muscle pulses to command the robot to carry the tasks. Also, this system can be used with a variety of robots, being necessary just a previous configuration. It is expected that, with the usage of this system, the disabled children have a better cognitive development and social interaction, balancing in a certain way, the negative effects of their disabilities. © 2011 IEEE.
Resumo:
Severely disabled children have little chance of environmental and social exploration and discovery. This lack of interaction and independency may lead to an idea that they are unable to do anything by themselves. In an attempt to help children in this situation, educational robotics can offer and aid, once it can provide them a certain degree of independency in the exploration of environment. The system developed in this work allows the child to transmit the commands to a robot through myoelectric and movement sensors. The sensors are placed on the child's body so they can obtain information from the body inclination and muscle contraction, thus allowing commanding, through a wireless communication, the mobile entertainment robot to carry out tasks such as play with objects and draw. In this paper, the details of the robot design and control architecture are presented and discussed. With this system, disabled children get a better cognitive development and social interaction, balancing in a certain way, the negative effects of their disabilities. © 2012 IEEE.