997 resultados para Edge states


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop a continuum theory to model low energy excitations of a generic four-band time reversal invariant electronic system with boundaries. We propose a variational energy functional for the wavefunctions which allows us to derive natural boundary conditions valid for such systems. Our formulation is particularly suited for developing a continuum theory of the protected edge/surface excitations of topological insulators both in two and three dimensions. By a detailed comparison of our analytical formulation with tight binding calculations of ribbons of topological insulators modelled by the Bernevig-Hughes-Zhang (BHZ) Hamiltonian, we show that the continuum theory with a natural boundary condition provides an appropriate description of the low energy physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study electronic transport across a helical edge state exposed to a uniform magnetic ((B) over right arrow) field over a finite length. We show that this system exhibits Fabry-Perot-type resonances in electronic transport. The intrinsic spin anisotropy of the helical edge states allows us to tune these resonances by changing the direction of the (B) over right arrow field while keeping its magnitude constant. This is in sharp contrast to the case of nonhelical one-dimensional electron gases with a parabolic dispersion, where similar resonances do appear in individual spin channels (up arrow and down arrow) separately which, however, cannot be tuned by merely changing the direction of the (B) over right arrow field. These resonances provide a unique way to probe the helical nature of the theory. We study the robustness of these resonances against a possible static impurity in the channel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use the bulk Hamiltonian for a three-dimensional topological insulator such as Bi-2 Se-3 to study the states which appear on its various surfaces and along the edge between two surfaces. We use both analytical methods based on the surface Hamiltonians (which are derived from the bulk Hamiltonian) and numerical methods based on a lattice discretization of the bulk Hamiltonian. We find that the application of a potential barrier along an edge can give rise to states localized at that edge. These states have an unusual energy-momentum dispersion which can be controlled by applying a potential along the edge; in particular, the velocity of these states can be tuned to zero. The scattering and conductance across the edge is studied as a function of the edge potential. We show that a magnetic field in a particular direction can also give rise to zero energy states on certain edges. We point out possible experimental ways of looking for the various edge states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the properties of the Dirac operator on manifolds with boundaries in the presence of the Atiyah-Patodi-Singer boundary condition. An exact counting of the number of edge states for boundaries with isometry of a sphere is given. We show that the problem with the above boundary condition can be mapped to one where the manifold is extended beyond the boundary and the boundary condition is replaced by a delta function potential of suitable strength. We also briefly highlight how the problem of the self-adjointness of the operators in the presence of moving boundaries can be simplified by suitable transformations which render the boundary fixed and modify the Hamiltonian and the boundary condition to reflect the effect of moving boundary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When spatial boundaries are inserted, supersymmetry (SUSY) can be broken. We have shown that in an N = 2 supersymmetric theory, all local boundary conditions allowed by self-adjointness of the Hamiltonian break N = 2 SUSY, while only a few of these boundary conditions preserve N = 1 SUSY. We have also shown that for a subset of the boundary conditions compatible with N = 1 SUSY, there exist fermionic ground states which are localized near the boundary. We also show that only very few nonlocal boundary conditions like periodic boundary conditions preserve full N = 2 supersymmetry, but none of them exhibits edge states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study graphene, which has both spin-orbit coupling (SOC), taken to be of the Kane-Mele form, and a Zeeman field induced due to proximity to a ferromagnetic material. We show that a zigzag interface of graphene having SOC with its pristine counterpart hosts robust chiral edge modes in spite of the gapless nature of the pristine graphene; such modes do not occur for armchair interfaces. Next we study the change in the local density of states (LDOS) due to the presence of an impurity in graphene with SOC and Zeeman field, and demonstrate that the Fourier transform of the LDOS close to the Dirac points can act as a measure of the strength of the spin-orbit coupling; in addition, for a specific distribution of impurity atoms, the LDOS is controlled by a destructive interference effect of graphene electrons which is a direct consequence of their Dirac nature. Finally, we study transport across junctions, which separates spin-orbit coupled graphene with Kane-Mele and Rashba terms from pristine graphene both in the presence and absence of a Zeeman field. We demonstrate that such junctions are generally spin active, namely, they can rotate the spin so that an incident electron that is spin polarized along some direction has a finite probability of being transmitted with the opposite spin. This leads to a finite, electrically controllable, spin current in such graphene junctions. We discuss possible experiments that can probe our theoretical predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photonic modes of Thue-Morse and Fibonacci lattices with generating layers A and B, of positive and negative indices of refraction, are calculated by the transfer-matrix technique. For Thue-Morse lattices, as well for periodic lattices with AB unit cell, the constructive interference of reflected waves, corresponding to the zero(th)-order gap, takes place when the optical paths in single layers A and B are commensurate. In contrast, for Fibonacci lattices of high order, the same phenomenon occurs when the ratio of those optical paths is close to the golden ratio. In the long wavelength limit, analytical expressions defining the edge frequencies of the zero(th) order gap are obtained for both quasi-periodic lattices. Furthermore, analytical expressions that define the gap edges around the zero(th) order gap are shown to correspond to the = 0 and = 0 conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In una formulazione rigorosa della teoria quantistica, la definizione della varietà Riemanniana spaziale su cui il sistema è vincolato gioca un ruolo fondamentale. La presenza di un bordo sottolinea l'aspetto quantistico del sistema: l'imposizione di condizioni al contorno determina la discretizzazione degli autovalori del Laplaciano, come accade con condizioni note quali quelle periodiche, di Neumann o di Dirichlet. Tuttavia, non sono le uniche possibili. Qualsiasi condizione al bordo che garantisca l'autoaggiunzione dell' operatore Hamiltoniano è ammissibile. Tutte le possibili boundary conditions possono essere catalogate a partire dalla richiesta di conservazione del flusso al bordo della varietà. Alcune possibili condizioni al contorno, permettono l'esistenza di stati legati al bordo, cioè autostati dell' Hamiltoniana con autovalori negativi, detti edge states. Lo scopo di questa tesi è quello di investigare gli effetti di bordo in sistemi unidimensionali implementati su un reticolo discreto, nella prospettiva di capire come simulare proprietà di edge in un reticolo ottico. Il primo caso considerato è un sistema di elettroni liberi. La presenza di edge states è completamente determinata dai parametri di bordo del Laplaciano discreto. Al massimo due edge states emergono, e possono essere legati all' estremità destra o sinistra della catena a seconda delle condizioni al contorno. Anche il modo in cui decadono dal bordo al bulk e completamente determinato dalla scelta delle condizioni. Ammettendo un' interazione quadratica tra siti primi vicini, un secondo tipo di stati emerge in relazione sia alle condizioni al contorno che ai parametri del bulk. Questi stati sono chiamati zero modes, in quanto esiste la possibilità che siano degeneri con lo stato fondamentale. Per implementare le più generali condizioni al contorno, specialmente nel caso interagente, è necessario utilizzare un metodo generale per la diagonalizzazione, che estende la tecnica di Lieb-Shultz-Mattis per Hamiltoniane quadratiche a matrici complesse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spin–orbit coupling changes graphene, in principle, into a two-dimensional topological insulator, also known as quantum spin Hall insulator. One of the expected consequences is the existence of spin-filtered edge states that carry dissipationless spin currents and undergo no backscattering in the presence of non-magnetic disorder, leading to quantization of conductance. Whereas, due to the small size of spin–orbit coupling in graphene, the experimental observation of these remarkable predictions is unlikely, the theoretical understanding of these spin-filtered states is shedding light on the electronic properties of edge states in other two-dimensional quantum spin Hall insulators. Here we review the effect of a variety of perturbations, like curvature, disorder, edge reconstruction, edge crystallographic orientation, and Coulomb interactions on the electronic properties of these spin filtered states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spin chains are among the simplest physical systems in which electron-electron interactions induce novel states of matter. Here we propose to combine atomic scale engineering and spectroscopic capabilities of state of the art scanning tunnel microscopy to probe the fractionalized edge states of individual atomic scale S=1 spin chains. These edge states arise from the topological order of the ground state in the Haldane phase. We also show that the Haldane gap and the spin-spin correlation length can be measured with the same technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Application of a perpendicular magnetic field to charge neutral graphene is expected to result in a variety of broken symmetry phases, including antiferromagnetic, canted, and ferromagnetic. All these phases open a gap in bulk but have very different edge states and noncollinear spin order, recently confirmed experimentally. Here we provide an integrated description of both edge and bulk for the various magnetic phases of graphene Hall bars making use of a noncollinear mean field Hubbard model. Our calculations show that, at the edges, the three types of magnetic order are either enhanced (zigzag) or suppressed (armchair). Interestingly, we find that preformed local moments in zigzag edges interact with the quantum spin Hall like edge states of the ferromagnetic phase and can induce backscattering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The edges of graphene and graphene like systems can host localized states with evanescent wave function with properties radically different from those of the Dirac electrons in bulk. This happens in a variety of situations, that are reviewed here. First, zigzag edges host a set of localized non-dispersive state at the Dirac energy. At half filling, it is expected that these states are prone to ferromagnetic instability, causing a very interesting type of edge ferromagnetism. Second, graphene under the influence of external perturbations can host a variety of topological insulating phases, including the conventional quantum Hall effect, the quantum anomalous Hall (QAH) and the quantum spin Hall phase, in all of which phases conduction can only take place through topologically protected edge states. Here we provide an unified vision of the properties of all these edge states, examined under the light of the same one orbital tight-binding model. We consider the combined action of interactions, spin–orbit coupling and magnetic field, which produces a wealth of different physical phenomena. We briefly address what has been actually observed experimentally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the helical edge states of a two-dimensional topological insulator without axial spin symmetry due to the Rashba spin-orbit interaction. Lack of axial spin symmetry can lead to so-called generic helical edge states, which have energy-dependent spin orientation. This opens the possibility of inelastic backscattering and thereby nonquantized transport. Here we find analytically the new dispersion relations and the energy dependent spin orientation of the generic helical edge states in the presence of Rashba spin-orbit coupling within the Bernevig-Hughes-Zhang model, for both a single isolated edge and for a finite width ribbon. In the single-edge case, we analytically quantify the energy dependence of the spin orientation, which turns out to be weak for a realistic HgTe quantum well. Nevertheless, finite size effects combined with Rashba spin-orbit coupling result in two avoided crossings in the energy dispersions, where the spin orientation variation of the edge states is very significantly increased for realistic parameters. Finally, our analytical results are found to compare well to a numerical tight-binding regularization of the model.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a theoretical study of electronic states in topological insulators with impurities. Chiral edge states in 2d topological insulators and helical surface states in 3d topological insulators show a robust transport against nonmagnetic impurities. Such a nontrivial character inspired physicists to come up with applications such as spintronic devices [1], thermoelectric materials [2], photovoltaics [3], and quantum computation [4]. Not only has it provided new opportunities from a practical point of view, but its theoretical study has deepened the understanding of the topological nature of condensed matter systems. However, experimental realizations of topological insulators have been challenging. For example, a 2d topological insulator fabricated in a HeTe quantum well structure by Konig et al. [5] shows a longitudinal conductance which is not well quantized and varies with temperature. 3d topological insulators such as Bi2Se3 and Bi2Te3 exhibit not only a signature of surface states, but they also show a bulk conduction [6]. The series of experiments motivated us to study the effects of impurities and coexisting bulk Fermi surface in topological insulators. We first address a single impurity problem in a topological insulator using a semiclassical approach. Then we study the conductance behavior of a disordered topological-metal strip where bulk modes are associated with the transport of edge modes via impurity scattering. We verify that the conduction through a chiral edge channel retains its topological signature, and we discovered that the transmission can be succinctly expressed in a closed form as a ratio of determinants of the bulk Green's function and impurity potentials. We further study the transport of 1d systems which can be decomposed in terms of chiral modes. Lastly, the surface impurity effect on the local density of surface states over layers into the bulk is studied between weak and strong disorder strength limits.