921 resultados para Earth,Age of.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Impact cratering has been a fundamental geological process in Earth history with major ramifications for the biosphere. The complexity of shocked and melted rocks within impact structures presents difficulties for accurate and precise radiogenic isotope age determination, hampering the assessment of the effects of an individual event in the geological record. We demonstrate the utility of a multi-chronometer approach in our study of samples from the 40 km diameter Araguainha impact structure of central Brazil. Samples of uplifted basement granite display abundant evidence of shock deformation, but U/Pb ages of shocked zircons and the Ar-40/Ar-39 ages of feldspar from the granite largely preserve the igneous crystallization and cooling history. Mixed results are obtained from in situ Ar-40/Ar-39 spot analyses of shocked igneous biotites in the granite, with deformation along kink-bands resulting in highly localized, partial resetting in these grains. Likewise, spot analyses of perlitic glass from pseudotachylitic breccia samples reflect a combination of argon inheritance from wall rock material, the age of the glass itself, and post-impact devitrification. The timing of crater formation is better assessed using samples of impact-generated melt rock where isotopic resetting is associated with textural evidence of melting and in situ crystallization. Granular aggregates of neocrystallized zircon form a cluster of ten U-Pb ages that yield a "Concordia" age of 247.8 +/- 3.8 Ma. The possibility of Pb loss from this population suggests that this is a minimum age for the impact event. The best evidence for the age of the impact comes from the U-Th-Pb dating of neocrystallized monazite and Ar-40/Ar-39 step heating of three separate populations of post-impact, inclusion-rich quartz grains that are derived from the infill of miarolitic cavities. The Pb-206/U-238 age of 254.5 +/- 3.2 Ma (2 sigma error) and Pb-208/Th-232 age of 255.2 +/- 4.8 Ma (2 sigma error) of monazite, together with the inverse, 18 point isochron age of 254 +/- 10 Ma (MSWD = 0.52) for the inclusion-rich quartz grains yield a weighted mean age of 254.7 +/- 2.5 Ma (0.99%, 2 sigma error) for the impact event. The age of the Araguainha crater overlaps with the timing of the Permo-Triassic boundary, within error, but the calculated energy released by the Araguainha impact is insufficient to be a direct cause of the global mass extinction. However, the regional effects of the Araguainha impact event in the Parana-Karoo Basin may have been substantial. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bauer M, Glenn T, Alda M, Andreassen OA, Ardau R, Bellivier F, Berk M, Bjella TD, Bossini L, Del Zompo M, Dodd S, Fagiolini A, Frye MA, Gonzalez-Pinto A, Henry C, Kapczinski F, Kliwicki S, Konig B, Kunz M, Lafer B, Lopez-Jaramillo C, Manchia M, Marsh W, Martinez-Cengotitabengoa M, Melle I, Morken G, Munoz R, Nery FG, ODonovan C, Pfennig A, Quiroz D, Rasgon N, Reif A, Rybakowski J, Sagduyu K, Simhandl C, Torrent C, Vieta E, Zetin M, Whybrow PC. Impact of sunlight on the age of onset of bipolar disorder. Bipolar Disord 2012: 14: 654663. (c) 2012 The Authors. Journal compilation (c) 2012 John Wiley & Sons A/S. Objective: Although bipolar disorder has high heritability, the onset occurs during several decades of life, suggesting that social and environmental factors may have considerable influence on disease onset. This study examined the association between the age of onset and sunlight at the location of onset. Method: Data were obtained from 2414 patients with a diagnosis of bipolar I disorder, according to DSM-IV criteria. Data were collected at 24 sites in 13 countries spanning latitudes 6.3 to 63.4 degrees from the equator, including data from both hemispheres. The age of onset and location of onset were obtained retrospectively, from patient records and/or direct interviews. Solar insolation data, or the amount of electromagnetic energy striking the surface of the earth, were obtained from the NASA Surface Meteorology and Solar Energy (SSE) database for each location of onset. Results: The larger the maximum monthly increase in solar insolation at the location of onset, the younger the age of onset (coefficient= -4.724, 95% CI: -8.124 to -1.323, p = 0.006), controlling for each countrys median age. The maximum monthly increase in solar insolation occurred in springtime. No relationships were found between the age of onset and latitude, yearly total solar insolation, and the maximum monthly decrease in solar insolation. The largest maximum monthly increases in solar insolation occurred in diverse environments, including Norway, arid areas in California, and Chile. Conclusion: The large maximum monthly increase in sunlight in springtime may have an important influence on the onset of bipolar disorder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sanidine separates from pumice of the early Miocene Peach Springs Tuff are concordantly dated at 18.5 ± 0.2 Ma by two isotopic techniques. The Peach Springs Tuff is the only known unit that can be correlated between isolated outcrops of Miocene strata from the central Mojave Desert of southeastern California to the western Colorado Plateau in Arizona, across five structural provinces, a distance of 350 km. Thus the age of the Peach Springs Tuff is important to structural and paleogeographic reconstructions of a large region. Biotite and sanidine separates from bulk samples of the Peach Springs Tuff from zones of welding and vapor-phase alteration have not produced consistent ages by the K-Ar method. Published ages of mineral separates from 17 localities ranged from 16.2 to 20.5 Ma. Discordant 40Ar/39Ar incremental release spectra were obtained for one biotite and two of the sanidine separates. Ages that correspond to the last gas increments are as old as 27 Ma. The 40Ar/39Ar incremental release determinations on sanidine separated from blocks of Peach Springs Tuff pumice yield ages of 18.3 ± 0.3 and 18.6 ± 0.4 Ma. Laser fusion measurements yield a mean age of 18.51 ± 0.10. The results suggest that sanidine and biotite K-Ar ages older than about 18.5 Ma are due to inherited Ar from pre-Tertiary contaminants, which likely were incorporated into the tuff during deposition. Sanidine K-Ar ages younger than 18 Ma probably indicate incomplete extraction of radiogenic 40Ar, whereas laser fusion dates of biotite and hornblende younger than 18 Ma likely are due to postdepositional alteration. Laser fusion ages as high as 19.01 Ma on biotite grains from pumice suggest that minerals from pre-Tertiary country rocks also were incorporated in the magma chamber.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Is numerical mimicry a third way of establishing truth? Kevin Heng received his M.S. and Ph.D. in astrophysics from the Joint Institute for Laboratory Astrophysics (JILA) and the University of Colorado at Boulder. He joined the Institute for Advanced Study in Princeton from 2007 to 2010, first as a Member and later as the Frank & Peggy Taplin Member. From 2010 to 2012 he was a Zwicky Prize Fellow at ETH Z¨urich (the Swiss Federal Institute of Technology). In 2013, he joined the Center for Space and Habitability (CSH) at the University of Bern, Switzerland, as a tenure-track assistant professor, where he leads the Exoplanets and Exoclimes Group. He has worked on, and maintains, a broad range of interests in astrophysics: shocks, extrasolar asteroid belts, planet formation, fluid dynamics, brown dwarfs and exoplanets. He coordinates the Exoclimes Simulation Platform (ESP), an open-source set of theoretical tools designed for studying the basic physics and chemistry of exoplanetary atmospheres and climates (www.exoclime.org). He is involved in the CHEOPS (Characterizing Exoplanet Satellite) space telescope, a mission approved by the European Space Agency (ESA) and led by Switzerland. He spends a fair amount of time humbly learning the lessons gleaned from studying the Earth and Solar System planets, as related to him by atmospheric, climate and planetary scientists. He received a Sigma Xi Grant-in-Aid of Research in 2006

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monazite-bearing Alpine clefts located in the Sonnblick region of the eastern Tauern Window, Austria, are oriented perpendicular to the foliation and lineation. Ion probe (SIMS) Th–Pb and U–Pb dating of four cleft monazites yields crystallization ages of different growth domains and aggregate regions ranging from 18.99 ± 0.51 to 15.00 ± 0.51 Ma. The crystallization ages obtained are overlapping or slightly younger than zircon fission track ages but older than zircon (U–Th)/He cooling ages from the same area. This constrains cleft monazite crystallization in this area to *300–200 �C. LA-ICP-MS data of dated hydrothermal monazites indicate that in graphite-bearing, reduced host lithologies, cleft monazite is poor in As and has higher La/Yb values and U concentrations, whereas in oxidised host rocks opposite trends are observed. Monazites show negative Eu anomalies and variable La/Yb values ranging from 520 to 6050. The positive correlation between Ca and Sr concentration indicates dissolution of plagioclase or carbonates as the source of these elements. The data show that early exhumation and cleft formation in the Tauern is related to metamorphic dome formation caused by the collision of the Adriatic with the European plate and that monazite crystallization in the clefts occurred later. Our data also demonstrate that hydrothermal monazite ages offer great potential in helping to constrain the chronology of exhumation in collisional orogens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The carbonate fraction of sediment core ODP 849, leg 138, located in the eastern equatorial Pacific, mostly consisting of coccoliths, was separated and analyzed for its Zn isotopic composition. The overall variation in Zn isotopic composition, as determined by multiple-collector, magnetic-sector, inductively coupled plasma mass spectrometry, was found to be on the order of 1? (expressed in delta66Zn, where deltaxZn=[(xZn/64Zn)sample/(xZn/64Zn)standard -1]*10**3 and x=66, 67 or 68) over the last 175 ka. The analytical precision was 0.04 per mil and the overall reproducibility was usually better than 0.07 per mil. The Zn isotopic composition signal exhibits several marked peaks and a high-frequency variability. A periodogram of the delta66Zn signal showed two periodicities of 35.2 and 21.2 ka. We suggest that the latter is caused by the precession of the Earth's axis of rotation. The periodogram exhibits a minimum at 41.1 ka, thus showing that the Zn isotopic composition is independent of the obliquity in the eastern equatorial Pacific. The range of delta66Zn values observed for the carbonate fraction of ODP 849 overlaps with the range observed for Fe-Mn nodules in the world's oceans, which suggests that seawater/carbonate Zn isotope fractionation is weak. We therefore assume that most of the Zn isotope variability is a result of the selective entrainment of the light isotopes by organic matter in the surface ocean. The ODP 849 delta66Zn record seems to follow the changes in the insolation cycles. Changes in the late summer/fall equatorial insolation modulate the intensity of the equatorial upwelling, hence the mixing between deep and surface waters. We propose that during decreased summer/fall equatorial insolation, when a steep thermocline can develop (El Niño-like conditions), the surface waters cannot be replenished by deep waters and become depleted in the lighter Zn isotopes by biological activity, thus resulting in the progressive increase of the delta66Zn values of the carbonate shells presumably in equilibrium with surface seawater.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early Holocene recession of the ice cover over Germania Land in North-East Greenland 7.5 ka B.P. brought the Inland Ice margin back to a position close to the present. Continued recession after that time lead to the formation of a "Storstrømmen Sound" which separated Germania Land from mainland Greenland in the period from about 6 to 1 ka B.P. The present filling of the approximately 100 km long sound by the glaciers of Storstrømmen and Kofoed-Hansen Bræ must therefore have taken place during the Little lce Age. In an archaeological sense this implies deterioration of the living conditions of Neo-Eskimos compared to those of Palaeo-Eskimos. The neoglacial re-formation and present existence of the glaciers as a Little Ice Age relict may imply a present-day instability in their dynamics, as demonstrated by the pulsations (surge-like behaviour) in the last part of the 20th century. An earlier Little Ice Age advance might possibly have had the same amplitude as that documented from the 20th century but its exact age and character is not known. The glacio-isostatic response of the earth's crust to the variations in the Holocene glacier load implies a relatively slow and slight emergence and subsequent submergence. The shift from emergence to submergence must have taken place between about 2 and 1 ka B.P.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of the Pb isotope data for the Leg 92 metalliferous sediments (carbonate-free fraction) form approximately linear arrays in the conventional isotopic plots, extending from the middle of the field for mid-ocean ridge basalts (MORB) toward the field for Mn nodules. These arrays are directed closely to the average values of Mn nodules, the composition of which reflects the Pb isotope composition of seawater (Reynolds and Dasch, 1971). Since the Leg 92 samples are almost devoid of continentally derived detritus, it can be inferred that the more radiogenic end-member is seawater. The less radiogenic end-member lies in the very middle of the MORB field, and hence can be considered to reflect the Pb isotope composition of typical ocean-ridge basalt. The array of data lying between these two end-members is most readily interpreted in terms of simple linear mixing of Pb from the two different end-member sources. According to this model, eight samples from Sites 599 to 601 contain 50 to 100% basaltic Pb. Five of these samples have compositions that are identical within the uncertainty of the analyses. We use the average of these five values to define our unradiogenic end-member in the linear mixing model. The ratios used for this average are 206Pb/204Pb = 18.425 ± 0.010; 207Pb/204Pb = 15.495 ± 0.018; 208Pb/204Pb = 37.879 ± 0.068. These values should approximate the average Pb isotope composition of discharging hydrothermal solutions, and therefore also that of the basaltic crust, over the period of time represented by these samples ( 4 m.y., from 4 to 8 Ma). Sr isotope ratios show a significant range of values, from 0.7082 to 0.7091. The lower ratios are well outside the value of 0.70910 ± 6 for modern-day seawater (Burke et al., 1982). However, most values correspond very closely to the curve of 87Sr/86Sr versus age for seawater, with older samples having progressively lower 87Sr/86Sr ratios. The simplest explanation for this progressive reduction is that recrystallization of the abundant biogenic carbonate in the sediments released older seawater Sr which was incorporated into ferromanganiferous phases during diagenesis. Leg 92 metalliferous sediments have total rare earth element (REE) contents that range on a carbonate-free basis from 131 to 301 ppm, with a clustering between 167 and 222 ppm. The patterns have strong negative Ce anomalies. Samples from Sites 599 to 601 display a slight but distinct enrichment in the heavy REE relative to the light REE, whereas those from Sites 597 to 598 show almost no heavy REE enrichment. The former patterns (those for Sites 599 to 601) are interpreted as indicating moderate diagenetic alteration of metalliferous sediments originating at the EPR axis; the latter reflect more complete diagenetic modification.