914 resultados para ERROR BOUND


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a probabilistic approach to model the problem of power supply voltage fluctuations. Error probability calculations are shown for some 90-nm technology digital circuits.The analysis here considered gives the timing violation error probability as a new design quality factor in front of conventional techniques that assume the full perfection of the circuit. The evaluation of the error bound can be useful for new design paradigms where retry and self-recoveringtechniques are being applied to the design of high performance processors. The method here described allows to evaluate the performance of these techniques by means of calculating the expected error probability in terms of power supply distribution quality.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We analyze a fully discrete spectral method for the numerical solution of the initial- and periodic boundary-value problem for two nonlinear, nonlocal, dispersive wave equations, the Benjamin–Ono and the Intermediate Long Wave equations. The equations are discretized in space by the standard Fourier–Galerkin spectral method and in time by the explicit leap-frog scheme. For the resulting fully discrete, conditionally stable scheme we prove an L2-error bound of spectral accuracy in space and of second-order accuracy in time.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A comparative study of aggregation error bounds for the generalized transportation problem is presented. A priori and a posteriori error bounds were derived and a computational study was performed to (a) test the correlation between the a priori, the a posteriori, and the actual error and (b) quantify the difference of the error bounds from the actual error. Based on the results we conclude that calculating the a priori error bound can be considered as a useful strategy to select the appropriate aggregation level. The a posteriori error bound provides a good quantitative measure of the actual error.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a technique for the rapid and reliable evaluation of linear-functional output of elliptic partial differential equations with affine parameter dependence. The essential components are (i) rapidly uniformly convergent reduced-basis approximations — Galerkin projection onto a space WN spanned by solutions of the governing partial differential equation at N (optimally) selected points in parameter space; (ii) a posteriori error estimation — relaxations of the residual equation that provide inexpensive yet sharp and rigorous bounds for the error in the outputs; and (iii) offline/online computational procedures — stratagems that exploit affine parameter dependence to de-couple the generation and projection stages of the approximation process. The operation count for the online stage — in which, given a new parameter value, we calculate the output and associated error bound — depends only on N (typically small) and the parametric complexity of the problem. The method is thus ideally suited to the many-query and real-time contexts. In this paper, based on the technique we develop a robust inverse computational method for very fast solution of inverse problems characterized by parametrized partial differential equations. The essential ideas are in three-fold: first, we apply the technique to the forward problem for the rapid certified evaluation of PDE input-output relations and associated rigorous error bounds; second, we incorporate the reduced-basis approximation and error bounds into the inverse problem formulation; and third, rather than regularize the goodness-of-fit objective, we may instead identify all (or almost all, in the probabilistic sense) system configurations consistent with the available experimental data — well-posedness is reflected in a bounded "possibility region" that furthermore shrinks as the experimental error is decreased.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aggregation disaggregation is used to reduce the analysis of a large generalized transportation problem to a smaller one. Bounds for the actual difference between the aggregated objective and the original optimal value are used to quantify the error due to aggregation and estimate the quality of the aggregation. The bounds can be calculated either before optimization of the aggregated problem (a priori) or after (a posteriori). Both types of the bounds are derived and numerically compared. A computational experiment was designed to (a) study the correlation between the bounds and the actual error and (b) quantify the difference of the error bounds from the actual error. The experiment shows a significant correlation between some a priori bounds, the a posteriori bounds and the actual error. These preliminary results indicate that calculating the a priori error bound is a useful strategy to select the appropriate aggregation level, since the a priori bound varies in the same way that the actual error does. After the aggregated problem has been selected and optimized, the a posteriori bound provides a good quantitative measure for the error due to aggregation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we introduce a relaxed version of the constant positive linear dependence constraint qualification (CPLD) that we call RCPLD. This development is inspired by a recent generalization of the constant rank constraint qualification by Minchenko and Stakhovski that was called RCRCQ. We show that RCPLD is enough to ensure the convergence of an augmented Lagrangian algorithm and that it asserts the validity of an error bound. We also provide proofs and counter-examples that show the relations of RCRCQ and RCPLD with other known constraint qualifications. In particular, RCPLD is strictly weaker than CPLD and RCRCQ, while still stronger than Abadie's constraint qualification. We also verify that the second order necessary optimality condition holds under RCRCQ.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Robust analysis of vector fields has been established as an important tool for deriving insights from the complex systems these fields model. Traditional analysis and visualization techniques rely primarily on computing streamlines through numerical integration. The inherent numerical errors of such approaches are usually ignored, leading to inconsistencies that cause unreliable visualizations and can ultimately prevent in-depth analysis. We propose a new representation for vector fields on surfaces that replaces numerical integration through triangles with maps from the triangle boundaries to themselves. This representation, called edge maps, permits a concise description of flow behaviors and is equivalent to computing all possible streamlines at a user defined error threshold. Independent of this error streamlines computed using edge maps are guaranteed to be consistent up to floating point precision, enabling the stable extraction of features such as the topological skeleton. Furthermore, our representation explicitly stores spatial and temporal errors which we use to produce more informative visualizations. This work describes the construction of edge maps, the error quantification, and a refinement procedure to adhere to a user defined error bound. Finally, we introduce new visualizations using the additional information provided by edge maps to indicate the uncertainty involved in computing streamlines and topological structures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present two new constraint qualifications (CQs) that are weaker than the recently introduced relaxed constant positive linear dependence (RCPLD) CQ. RCPLD is based on the assumption that many subsets of the gradients of the active constraints preserve positive linear dependence locally. A major open question was to identify the exact set of gradients whose properties had to be preserved locally and that would still work as a CQ. This is done in the first new CQ, which we call the constant rank of the subspace component (CRSC) CQ. This new CQ also preserves many of the good properties of RCPLD, such as local stability and the validity of an error bound. We also introduce an even weaker CQ, called the constant positive generator (CPG), which can replace RCPLD in the analysis of the global convergence of algorithms. We close this work by extending convergence results of algorithms belonging to all the main classes of nonlinear optimization methods: sequential quadratic programming, augmented Lagrangians, interior point algorithms, and inexact restoration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis provides efficient and robust algorithms for the computation of the intersection curve between a torus and a simple surface (e.g. a plane, a natural quadric or another torus), based on algebraic and numeric methods. The algebraic part includes the classification of the topological type of the intersection curve and the detection of degenerate situations like embedded conic sections and singularities. Moreover, reference points for each connected intersection curve component are determined. The required computations are realised efficiently by solving quartic polynomials at most and exactly by using exact arithmetic. The numeric part includes algorithms for the tracing of each intersection curve component, starting from the previously computed reference points. Using interval arithmetic, accidental incorrectness like jumping between branches or the skipping of parts are prevented. Furthermore, the environments of singularities are correctly treated. Our algorithms are complete in the sense that any kind of input can be handled including degenerate and singular configurations. They are verified, since the results are topologically correct and approximate the real intersection curve up to any arbitrary given error bound. The algorithms are robust, since no human intervention is required and they are efficient in the way that the treatment of algebraic equations of high degree is avoided.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An approximate number is an ordered pair consisting of a (real) number and an error bound, briefly error, which is a (real) non-negative number. To compute with approximate numbers the arithmetic operations on errors should be well-known. To model computations with errors one should suitably define and study arithmetic operations and order relations over the set of non-negative numbers. In this work we discuss the algebraic properties of non-negative numbers starting from familiar properties of real numbers. We focus on certain operations of errors which seem not to have been sufficiently studied algebraically. In this work we restrict ourselves to arithmetic operations for errors related to addition and multiplication by scalars. We pay special attention to subtractability-like properties of errors and the induced “distance-like” operation. This operation is implicitly used under different names in several contemporary fields of applied mathematics (inner subtraction and inner addition in interval analysis, generalized Hukuhara difference in fuzzy set theory, etc.) Here we present some new results related to algebraic properties of this operation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we consider the a posteriori and a priori error analysis of discontinuous Galerkin interior penalty methods for second-order partial differential equations with nonnegative characteristic form on anisotropically refined computational meshes. In particular, we discuss the question of error estimation for linear target functionals, such as the outflow flux and the local average of the solution. Based on our a posteriori error bound we design and implement the corresponding adaptive algorithm to ensure reliable and efficient control of the error in the prescribed functional to within a given tolerance. This involves exploiting both local isotropic and anisotropic mesh refinement. The theoretical results are illustrated by a series of numerical experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis proves certain results concerning an important question in non-equilibrium quantum statistical mechanics which is the derivation of effective evolution equations approximating the dynamics of a system of large number of bosons initially at equilibrium (ground state at very low temperatures). The dynamics of such systems are governed by the time-dependent linear many-body Schroedinger equation from which it is typically difficult to extract useful information due to the number of particles being large. We will study quantitatively (i.e. with explicit bounds on the error) how a suitable one particle non-linear Schroedinger equation arises in the mean field limit as number of particles N → ∞ and how the appropriate corrections to the mean field will provide better approximations of the exact dynamics. In the first part of this thesis we consider the evolution of N bosons, where N is large, with two-body interactions of the form N³ᵝv(Nᵝ⋅), 0≤β≤1. The parameter β measures the strength and the range of interactions. We compare the exact evolution with an approximation which considers the evolution of a mean field coupled with an appropriate description of pair excitations, see [18,19] by Grillakis-Machedon-Margetis. We extend the results for 0 ≤ β < 1/3 in [19, 20] to the case of β < 1/2 and obtain an error bound of the form p(t)/Nᵅ, where α>0 and p(t) is a polynomial, which implies a specific rate of convergence as N → ∞. In the second part, utilizing estimates of the type discussed in the first part, we compare the exact evolution with the mean field approximation in the sense of marginals. We prove that the exact evolution is close to the approximate in trace norm for times of the order o(1)√N compared to log(o(1)N) as obtained in Chen-Lee-Schlein [6] for the Hartree evolution. Estimates of similar type are obtained for stronger interactions as well.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This dissertation mainly focuses on coordinated pricing and inventory management problems, where the related background is provided in Chapter 1. Several periodic-review models are then discussed in Chapters 2,3,4 and 5, respectively. Chapter 2 analyzes a deterministic single-product model, where a price adjustment cost incurs if the current selling price is changed from the previous period. We develop exact algorithms for the problem under different conditions and find out that computation complexity varies significantly associated with the cost structure. %Moreover, our numerical study indicates that dynamic pricing strategies may outperform static pricing strategies even when price adjustment cost accounts for a significant portion of the total profit. Chapter 3 develops a single-product model in which demand of a period depends not only on the current selling price but also on past prices through the so-called reference price. Strongly polynomial time algorithms are designed for the case without no fixed ordering cost, and a heuristic is proposed for the general case together with an error bound estimation. Moreover, our illustrates through numerical studies that incorporating reference price effect into coordinated pricing and inventory models can have a significant impact on firms' profits. Chapter 4 discusses the stochastic version of the model in Chapter 3 when customers are loss averse. It extends the associated results developed in literature and proves that the reference price dependent base-stock policy is proved to be optimal under a certain conditions. Instead of dealing with specific problems, Chapter 5 establishes the preservation of supermodularity in a class of optimization problems. This property and its extensions include several existing results in the literature as special cases, and provide powerful tools as we illustrate their applications to several operations problems: the stochastic two-product model with cross-price effects, the two-stage inventory control model, and the self-financing model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

"October 20, 1954"