46 resultados para EROSIVITY
Resumo:
The concept of rainfall erosivity is extended to the estimation of catchment sediment yield and its variation over time. Five different formulations of rainfall erosivity indices, using annual, monthly and daily rainfall data, are proposed and tested on two catchments in the humid tropics of Australia. Rainfall erosivity indices, using simple power functions of annual and daily rainfall amounts, were found to be adequate in describing the interannual and seasonal variation of catchment sediment yield. The parameter values of these rainfall erosivity indices for catchment sediment yield are broadly similar to those for rainfall erosivity models in relation to the R-factor in the Universal Soil Loss Equation.
Resumo:
Knowledge on the factors influencing water erosion is fundamental for the choice of the best land use practices. Rainfall, expressed by rainfall erosivity, is one of the most important factors of water erosion. The objective of this study was to determine rainfall erosivity and the return period of rainfall in the Coastal Plains region, near Aracruz, a town in the state of Espírito Santo, Brazil, based on available data. Rainfall erosivity was calculated based on historic rainfall data, collected from January 1998 to July 2004 at 5 min intervals, by automatic weather stations of the Aracruz Cellulose S.A company. A linear regression with individual rainfall and erosivity data was fit to obtain an equation that allowed data extrapolation to calculate individual erosivity for a 30-year period. Based on this data the annual average rainfall erosivity in Aracruz was 8,536 MJ mm ha-1 h-1 yr-1. Of the total annual rainfall erosivity 85 % was observed in the most critical period October to March. Annual erosive rains accounted for 38 % of the events causing erosion, although the runoff volume represented 88 % of the total. The annual average rainfall erosivity return period was estimated to be 3.4 years.
Resumo:
The erosive capacity of rainfall can be expressed by an index and knowing it allows recommendation of soil management and conservation practices to reduce water erosion. The objective of this study was to calculate various indices of rainfall erosivity in Lages, Santa Catarina, Brazil, identify the best one, and discover its temporal distribution. The study was conducted at the Center of Agricultural and Veterinary Sciences, Lages, Santa Catarina, using daily rainfall charts from 1989 to 2012. Using the computer program Chuveros , 107 erosivity indices were obtained, which were based on maximum intensity in 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 110, 120, 135, 150, 165, 180, 210, and 240 min of duration and on the combination of these intensities with the kinetic energy obtained by the equations of Brown & Foster, Wagner & Massambani, and Wischmeier & Smith. The indices of the time period from 1993 to 2012 were correlated with the respective soil losses from the standard plot of the Universal Soil Loss Equation (USLE) in order to select the erosivity index for the region. Erosive rainfall accounted for 83 % of the mean annual total volume of 1,533 mm. The erosivity index (R factor) of rainfall recommended for Lages is the EI30, whose mean annual value is 5,033 MJ mm ha-1 h-1, and of this value, 66 % occurs from September to February. Mean annual erosivity has a return period estimated at two years with a 50 % probability of occurrence.
Resumo:
The Artificial Neural Networks (ANNs) are mathematical models method capable of estimating non-linear response plans. The advantage of these models is to present different responses of the statistical models. Thus, the objective of this study was to develop and to test ANNs for estimating rainfall erosivity index (EI30) as a function of the geographical location for the state of Rio de Janeiro, Brazil and generating a thematic visualization map. The characteristics of latitude, longitude e altitude using ANNs were acceptable to estimating EI30 and allowing visualization of the space variability of EI30. Thus, ANN is a potential option for the estimate of climatic variables in substitution to the traditional methods of interpolation.
Resumo:
Rainfall erosivities as defined by the R factor from the universal soil loss equation were determined for all events during a two-year period at the station La Cuenca in western Amazonia. Three methods based on a power relationship between rainfall amount and erosivity were then applied to estimate event and daily rainfall erosivities from the respective rainfall amounts. A test of the resulting regression equations against an independent data set proved all three methods equally adequate in predicting rainfall erosivity from daily rainfall amount. We recommend the Richardson model for testing in the Amazon Basin, and its use with the coefficient from La Cuenca in western Amazonia.
Resumo:
The need for continuous recording rain gauges makes it difficult to determine the rainfall erosivity factor (R-factor) of the (R)USLE model in areas without good temporal data coverage. In mainland Spain, the Nature Conservation Institute (ICONA) determined the R-factor at few selected pluviographs, so simple estimates of the R-factor are definitely of great interest. The objectives of this study were: (1) to identify a readily available estimate of the R-factor for mainland Spain; (2) to discuss the applicability of a single (global) estimate based on analysis of regional results; (3) to evaluate the effect of record length on estimate precision and accuracy; and (4) to validate an available regression model developed by ICONA. Four estimators based on monthly precipitation were computed at 74 rainfall stations throughout mainland Spain. The regression analysis conducted at a global level clearly showed that modified Fournier index (MFI) ranked first among all assessed indexes. Applicability of this preliminary global model across mainland Spain was evaluated by analyzing regression results obtained at a regional level. It was found that three contiguous regions of eastern Spain (Catalonia, Valencian Community and Murcia) could have a different rainfall erosivity pattern, so a new regression analysis was conducted by dividing mainland Spain into two areas: Eastern Spain and plateau-lowland area. A comparative analysis concluded that the bi-areal regression model based on MFI for a 10-year record length provided a simple, precise and accurate estimate of the R-factor in mainland Spain. Finally, validation of the regression model proposed by ICONA showed that R-ICONA index overpredicted the R-factor by approximately 19%.
Resumo:
Cr3C2-NiCr and WC-Ni coatings are widely used for wear applications at high and room temperature, respectively. Due to the high corrosion resistance of NiCr binder, Cr3C2-NiCr coatings are also used in corrosive environments. The application of WC-Ni coatings in corrosive media is 14 not recommended due to the poor corrosion resistance of the (pure Ni) metallic matrix. It is well known that the addition of Cr to the metallic binder improves the corrosion properties. Erosion-corrosion performance of thermal spray coatings is widely influenced by ceramic phase composition, the size of ceramic particles and also the composition of the metallic binder. In the present work, two types of HVOF thermal spray coatings (Cr3C2-NiCr and WC-Ni) obtained with different spray conditions were studied and compared with conventional micro-cracked hard chromium coatings. Both as-sprayed and polished samples were tested under two erosion-corrosion conditions with different erosivity. Tungsten carbide coatings showed better performance under the most erosive condition, while chromium carbide coatings were superior under less erosive conditions. Some of the tungsten carbide coatings and hard chromium showed similar erosion-corrosion behaviour under more and less erosive conditions. The erosion-corrosion and electrochemical results showed that surface polishing improved the erosion-corrosion properties of the thermally sprayed coatings. The corrosion behaviour of the different coatings has been compared using Electrochemical Impedance Spectroscopy (EIS) and polarization curves. Total material loss due to erosion-corrosion was determined by weight loss measurements. An estimation of the corrosion contribution to the total weight loss was also given. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
O conhecimento do valor da erosividade da chuva (R) de determinada localidade é fundamental para a estimativa das perdas de solo feitas a partir da Equação Universal de Perdas de Solo, sendo, portanto, de grande importância no planejamento conservacionista. A fim de obter estimativas do valor de R para localidades onde este é desconhecido, desenvolveu-se uma rede neural artificial (RNA) e analisou-se a acurácia desta com o método de interpolação "Inverso de uma Potência da Distância" (ID). Comparando a RNA desenvolvida com o método de interpolação ID, verificou-se que a primeira apresentou menor erro relativo médio na estimativa de R e melhor índice de confiança, classificado como "Ótimo", podendo, portanto, ser utilizada no planejamento de uso, manejo e conservação do solo no Estado de São Paulo.
Resumo:
Os processos de erosão hídrica em Cabo Verde são os mais marcantes da dinâmica actual das vertentes, pois são os mais comuns e que afectam áreas extensasdurante a curta estação húmida de três meses. A ocorrência de episódios chuvosos concentrados no tempo e com uma evidente irregularidade espacial permitem umaacentuada erosividade das precipitações, marcada por uma forte irregularidade regional. A forte variabilidade das formas de relevo, a diversidade da natureza das unidadesgeológicas e a multiplicidade de ocupação do solo favorecem condições deerodibilidade muito contrastadas no espaço. O objectivo deste trabalho é estabelecer um modelo desusceptibilidade à erosão hídricaem função de factores geomorfológicos (declive, perfil e traçado das vertentes eerodibilidade das unidades litológicas e dos materiais de cobertura), climáticos(intensidade pluviométrica) e de ocupação do solo para as bacias das ribeiras dos Picose Seca. Os resultados foram obtidos com recurso ao ambiente de Sistemas deInformação Geográfica (SIG). Este trabalho surge na sequência de outros já realizadospelos autores, onde se apresentaram as condições de erodibilidade e erosividade paraáreas mais restritas da Ilha de Santiago. O modelo de susceptibilidade à erosão hídrica resultou do cruzamento dos mapas dedeclives, de perfil e do traçado das vertentes, obtidos a partir do modelo digital deterreno (DTM), do mapa geológico, da distribuição espacial da intensidadepluviométrica e da densidade de ocupação do solo, tendo em conta que são estas asprincipais condicionantes de erosão hídrica, referidas pelos autores que estudaram estaregião. Cada um destes mapas foi reclassificado com base numa análise qualitativa dograu de erodibilidade, sendo atribuído um número de ordem a cada classe, em função da sua susceptibilidade à erosão hídrica, conforme foi localmente reconhecido. Verifica-se que as áreas de maior susceptibilidade à erosão hídrica são as do sectorsudeste da bacia da Ribeira Seca e as vertentes dos principais vales da bacia da Ribeira dos Picos, onde se encontram as unidades geológicas mais friáveis, os declives mais acentuados e onde predominam sectores das vertentes de traçado côncavo, a que seassocia pontualmente a mais elevada intensidade pluviométrica.
Resumo:
Na Ilha de Santiago, em Cabo Verde, a erosão hídrica é o processo que afecta áreas mais extensas. A ocorrência de aguaceiros intensos e concentrados no tempo e no espaço promovem uma marcada erosividade das precipitações, com forte irregularidade regional. A grande variabilidade dos declives e das formas das vertentes, associadas à diversidade litológica, bem como à multiplicidade de ocupação do solo, permitem condições de erodibilidade muito contrastadas no espaço. O objectivo deste trabalho é obter um mapa de susceptibilidade à erosão hídrica para a bacia da Ribeira Seca (Santiago oriental) com base no modelo digital do terreno (MDT), nos mapas geológico e de ocupação do solo e na distribuição da erosividade das precipitações. Verifica-se que o sector sudeste da bacia é o mais susceptível à erosão hídrica, pois nele ocorrem a maior concentração diária das precipitações e as condições geomorfológicas e de coberto do solo de mais elevada erodibilidade.
Resumo:
The most advanced stage of water erosion, the gully, represents severe problems in different contexts, both in rural and urban environments. In the search for a stabilization of the process in a viable manner it is of utmost importance to assess the efficiency of evaluation methodologies. For this purpose, the efficiency of low-cost conservation practices were tested for the reduction of soil and nutrient losses caused by erosion from gullies in Pinheiral, state of Rio de Janeiro. The following areas were studied: gully recovered by means of physical and biological strategies; gullies in recovering stage, by means of physical strategies only, and gullies under no restoration treatment. During the summer of 2005/2006, the following data sets were collected for this study: soil classification of each of the eroded gully areas; planimetric and altimetric survey; determination of rain erosivity indexes; determination of amount of soil sediment; sediment grain size characteristics; natural amounts of nutrients Ca, Mg, K and P, as well as total C and N concentrations. The results for the three first measurements were 52.5, 20.5, and 29.0 Mg in the sediments from the gully without intervention, and of 1.0, 1.7 and 1.8 Mg from the gully with physical interventions, indicating an average reduction of 95 %. The fully recovered gully produced no sediment during the period. The data of total nutrient loss from the three gullies under investigation showed reductions of 98 % for the recovering gully, and 99 % for the fully recovered one. As for the loss of nutrients, the data indicate a nutrient loss of 1,811 kg from for the non-treated gully. The use of physical and biological interventions made it possible to reduce overall nutrient loss by more than 96 %, over the entire rainy season, as compared to the non-treated gully. Results show that the methods used were effective in reducing soil and nutrient losses from gullies.
Resumo:
Rainfall erosivity is one of the main factors related to water erosion in the tropics. This work focused on relating soil loss from a typic dystrophic Tb Haplic Cambisol (CXbd) and a typic dystrophic Red Latosol (LVdf) to different patterns of natural erosive rainfall. The experimental plots of approximately 26 m² (3 x 8.67 m) consisted of a CXbd area with a 0.15 m m-1 slope and a LVdf area with 0.12 m m-1 slope, both delimited by galvanized plates. Drainpipes were installed at the lower part of these plots to collect runoff, interconnected with a Geib or multislot divisor. To calculate erosivity (EI30), rainfall data, recorded continuously at a weather station in Lavras, were used. The data of erosive rainfall events were measured (10 mm precipitation intervals, accuracy 0.2 mm, 24 h period, 20 min intervals), characterized as rainfall events with more than 10 mm precipitation, maximum intensity > 24 mm h-1 within 15 min, or kinetic energy > 3.6 MJ, which were used in this study to calculate the rainfall erosivity parameter, were classified according to the moment of peak precipitation intensity in advanced, intermediate and delayed patterns. Among the 139 erosive rainfall events with CXbd soil loss, 60 % were attributed to the advanced pattern, with a loss of 415.9 Mg ha-1, and total losses of 776.0 Mg ha-1. As for the LVdf, of the 93 erosive rainfall events with soil loss, 58 % were listed in the advanced pattern, with 37.8 Mg ha-1 soil loss and 50.9 Mg ha-1 of total soil loss. The greatest soil losses were observed in the advanced rain pattern, especially for the CXbd. From the Cambisol, the soil loss per rainfall event was greatest for the advanced pattern, being influenced by the low soil permeability.
Resumo:
The objective of this work was to evaluate the seasonal variation of soil cover and rainfall erosivity, and their influences on the revised universal soil loss equation (Rusle), in order to estimate watershed soil losses in a temporal scale. Twenty-two TM Landsat 5 images from 1986 to 2009 were used to estimate soil use and management factor (C factor). A corresponding rainfall erosivity factor (R factor) was considered for each image, and the other factors were obtained using the standard Rusle method. Estimated soil losses were grouped into classes and ranged from 0.13 Mg ha-1 on May 24, 2009 (dry season) to 62.0 Mg ha-1 on March 11, 2007 (rainy season). In these dates, maximum losses in the watershed were 2.2 and 781.5 Mg ha-1 , respectively. Mean annual soil loss in the watershed was 109.5 Mg ha-1 , but the central area, with a loss of nearly 300.0 Mg ha-1 , was characterized as a site of high water-erosion risk. The use of C factor obtained from remote sensing data, associated to corresponding R factor, was fundamental to evaluate the soil erosion estimated by the Rusle in different seasons, unlike of other studies which keep these factors constant throughout time.
Resumo:
Information about rainfall erosivity is important during soil and water conservation planning. Thus, the spatial variability of rainfall erosivity of the state Mato Grosso do Sul was analyzed using ordinary kriging interpolation. For this, three pluviograph stations were used to obtain the regression equations between the erosivity index and the rainfall coefficient EI30. The equations obtained were applied to 109 pluviometric stations, resulting in EI30 values. These values were analyzed from geostatistical technique, which can be divided into: descriptive statistics, adjust to semivariogram, cross-validation process and implementation of ordinary kriging to generate the erosivity map.Highest erosivity values were found in central and northeast regions of the State, while the lowest values were observed in the southern region. In addition, high annual precipitation values not necessarily produce higher erosivity values.